K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

5 tháng 10 2017

Chọn D

Ta có y ' = 3 x 2 - 6 m x + m - 1

Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0  có hai nghiệm phân biệt

Điều này tương đương

Hai điểm cực trị có hoành độ dương

Vậy các giá trị cần tìm của m là m >1

 

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

NV
30 tháng 6 2021

- Với \(m=0\Rightarrow y=-x^2-2\) chỉ có cực đại (thỏa mãn)

- Với \(m\ne0\) hàm chỉ có cực đại khi:

\(\left\{{}\begin{matrix}m< 0\\m\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)

Vậy \(m\le0\)

30 tháng 10 2018

Đáp án A

Phương pháp giải:

Tìm tọa độ điểm cực trị của đồ thị hàm số trùng phương và tính diện tích tam giác

Lời giải: TXĐ : D = R

Ta có R

Phương trình 

Hàm số có 3 điểm cực trị ó (*) có 2 nghiệm phân biệt khác 

Khi đó 

Gọi ;  là ba điểm cực trị. Tam giác ABC cân tại A.

Trung điểm  H của BC là

 Diện tích tam giác ABC là  

Mà suy ra 

Vậy Smax = 1 Dấu bằng xảy ra khi và chỉ khi m = 0

24 tháng 9 2019

Chọn C

[Phương pháp tự luận]

Hàm số có cực đại , cực tiểu khi và chỉ khi  m < 1

Tọa độ điểm cực trị  A ( 0 ; m + 1 )

Phương trình đường thẳng BC: y + m 4 - 2 m 2 - m = 0

 

Vậy S đạt giá trị lớn nhất  ⇔ m = 0

[Phương pháp trắc nghiệm]

Vậy S đạt giá trị lớn nhất  ⇔ m = 0

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

5 tháng 7 2022

 

.

 

5 tháng 7 2022

undefined

14 tháng 5 2018

27 tháng 3 2016

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)