Cho hình chóp S.ABC có SA vuông góc với đáy, SA = a, tam giác ABC vuông cân, Ab = BC = a là trung điểm của SB, H là chân đường cao hạ từ A của tam giác SAC. Tính thể tích hình chóp S.AMH.
A. a 3 9
B. a 3 12
C. a 3 27
D. a 3 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)
⇒ BC ⊥ SB.
⇒ tam giác SBC vuông tại B.
b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)
⇒ (SBH) ⊥ (SAC).
c) d[B, (SAC)] = BH. Ta có:
Đáp án là B
Tam giác SAB vuông tại A có S A 2 = S B 2 - A B 2 = 4 a 2 nên SA= 2a
Có S A B C = 1 2 A B . A C = 2 a 2
Có V = 1 3 S A . S A B C = 4 a 3 3
Đáp án D
Có S A B C = 1 2 . a . a = a 2 2
Vậy V S . A B C = 1 3 S A . S A B C = a 3 3 6
Đáp án D