cho a số nguyên a, b,c ,d thỏa mãn 2d=a+c , 2c+b+d , a2+d2<4 . Tìm a , biết b= 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)
\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))
\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac=bd\) (do \(b\ne d\))
Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Do đó:
\(\left(\dfrac{a+2c}{b+2d}\right)^2=\left(\dfrac{bk+2dk}{b+2d}\right)^2=k^2\left(1\right)\)
Mà
\(\dfrac{a^2+2c^2}{b^2+2d^2}=\dfrac{b^2k^2+2d^2k^2}{b^2+2d^2}=k^2\left(2\right)\)
Từ (1) và (2) ta suy ra đpcm
Bạn đưa về như họ là đc , mk thử giúp bạn
(2a + b)/(a+b) = (a+a+b)/(a+b) = a/(a+b) + (a+b)/(a+b) = a/(a+b) + 1
Ở câu hỏi tương tự người ta đưa về dạnh này
Vì c, d là 2 số nguyên liên tiếp nên \(d=c+1\)
Thay vào đẳng thức \(a-b=a^2c-b^2d\)ta được
\(a-b=a^2c-b^2\left(c+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left[c\left(a+b\right)-1\right]=b^2\)
Dễ dàng chứng minh được \(\left(a-b,c\left(a+b\right)-1\right)=1\)
nên \(\left|a-b\right|\)là số chính phương
Vì a,b,c,d>0 ta áp dụng t/c dãy tỉ số bằng nhau:
`a/(2b)=b/(2c)=c/(2d)=d/(2a)=(a+b+c+d)/(2a+2b+2c+2d)=1/2`
`=>a/(2b)=1/2=>a=b`
Tương tự ta có:`b=c,c=d,d=a`
`=>a=b=c=d`
`=>A=(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)=1/2+1/2+1/2+1/2=2`
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2b+2c+2d+2a}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{2b}=\dfrac{1}{2}\\\dfrac{b}{2c}=\dfrac{1}{2}\\\dfrac{c}{2d}=\dfrac{1}{2}\\\dfrac{d}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Leftrightarrow a=b=c=d\)
Ta có: \(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{d+a}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)
2c+b+d ;?