K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

24 giờ

10 tháng 11 2021

B

12 tháng 11 2021

S R I N

\(i=i'\)

\(\Rightarrow\)Góc hợp bởi tia phản xạ với mặt gương bằng góc hợp bởi tia tới và mặt gương

\(\Rightarrow\)SI năm phương nằm ngang một góc 45o

12 tháng 11 2021

20 độ

12 tháng 11 2021

S A I

\(\Rightarrow\)Câu A

12 tháng 11 2021

Chết r! Thêm hộ m chữ G vào gương !Quên!;-;

16 tháng 12 2021

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔCDM

16 tháng 12 2021

a) Xét tam giác ABM và tam giác CDM có:

+ AM = CM (cho M là trung điểm của AC).

+ BM = DM (gt).

\(\widehat{AMB}=\widehat{CMD}\) (2 góc đối đỉnh).

\(\Rightarrow\)  Tam giác ABM = Tam giác CDM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{DCM}\) (Tam giác ABM = Tam giác CDM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) AB // CD (dhnb).

c) Xét tam giác ABN và tam giác ECN có:

+ BN = CN (N là trung điểm của BC).

\(\widehat{ANN}=\widehat{ENC}\) 2 góc đối đỉnh).

\(\widehat{ABN}=\widehat{ECN}\) (do AB // CD).

\(\Rightarrow\) Tam giác ABN = Tam giác ECN (g - c - g).

\(\Rightarrow\) CE = AB (2 cạnh tương ứng).

Mà AB = CD (Tam giác ABM = Tam giác CDM).

\(\Rightarrow\) CE = CD (cùng = AB).

\(\Rightarrow\) C là trung điểm của DE (đpcm).

d) Xét tam giác BDE có:

+ M là trung điểm của BD (do MD = MB).

+ C là trung điểm của DE (cmt).

\(\Rightarrow\) MC là đường trung bình.

\(\Rightarrow\) MC // BE và MC = \(\dfrac{1}{2}\) BE (Tính chất đường trung bình trong tam giác).

Lại có: MC = \(\dfrac{1}{2}\) MF (do MC = MF).

\(\Rightarrow\) BE = MF.

Xét tứ giác BMEF có:

+ BE = MF (cmt).

+ BE // MF (MC // BE; C thuộc MF).

\(\Rightarrow\) Tứ giác BMEF là hình bình hành (dhnb).

\(\Rightarrow\) ME cắt BF tại trung điểm của mỗi đường (Tính chất hình bình hành).

Mà O là trung điểm của ME (gt).

\(\Rightarrow\) O là trung điểm của BF.

\(\Rightarrow\) 3 điểm B; O; F thẳng hàng (đpcm).

1: Ta có: \(\widehat{BAD}+\widehat{B}=90^0\)

\(\widehat{BCE}+\widehat{B}=90^0\)

Do đó: \(\widehat{BAD}=\widehat{BCE}\)

2: Ta có: \(\widehat{AHE}+\widehat{BAD}=90^0\)

\(\widehat{ABD}+\widehat{BAD}=90^0\)

Do đó: \(\widehat{AHE}=\widehat{ABD}\)

20 tháng 8 2021

Thế còn câu 3 bạn giúp mình nốt đi

4: Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

30 tháng 8 2021

mình chưa học đến đường trung bình

1: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

Ta có: ΔBAC cân tại A

mà AH là đường trung tuyến ứng với cạnh đáy BC

nên AH là đường cao ứng với cạnh BC

30 tháng 8 2021

1. Tam giác AOC và tam giác BOD có: AO = BO; CO = DO: góc AOC = góc BOD (đối đỉnh)

--> tam giác AOC = tam giác BOD (c.g.c)

--> góc ACO = góc ODB

Mà 2 góc này ở vị trí so le trong

--> AC // BD

30 tháng 8 2021

b) Tam giác ACD và tam giác BDC có: CD chung; AC = BD (do tam giác AOC = tam giác BOD); góc ACO = góc ODB (câu a)

--> tam giác ACD = tam giác BDC

24 tháng 9 2021

Áp dụng t/c dtsbn:

\(a+b+c=\dfrac{c}{a+b+1}=\dfrac{a}{b+c+2}=\dfrac{b}{a+c-3}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{1}{2}\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=\dfrac{1}{2}\\2c=a+b+1\\2a=b+c+2\\2b=a+c-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+1=3c\\a+b+c+2=3a\\a+b+c-3=3b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3c=\dfrac{3}{2}\\3a=\dfrac{5}{2}\\3b=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}\\a=\dfrac{5}{6}\\b=-\dfrac{5}{6}\end{matrix}\right.\)