K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

Đáp án A

Gọi H là tâm của tam giác đều ABC. Gọi M là trung điểm của BC.

Vì tam giác ABC đều cạnh a nên:

  A M = a 3 2 và  A H = 2 3 A M = a 3 3

Tam giác SAH vuông tại H

⇒ S H = S A 2 - A H 2 = a 2 - a 2 3 = a 6 3

Thể tích khối chóp S.ABC là:

V = 1 3 . S A B C . S H = 1 3 . a 2 3 4 . a 6 3 = a 3 2 12

30 tháng 1 2019

20 tháng 11 2017

Chọn B

Gọi H là trọng tâm tam giác ABC, khi đó

Góc giữa cạnh bên và mặt đáy là góc 

30 tháng 12 2019

Đáp án A

Gọi H là hình chiếu của S lên (ABCD)

Ta có:  A H = a 2 − a 2 2 = a 3 3 ;

S H = 3 a 2 − a 3 3 2 = 26 3 a

Thể tích khối chóp là:

V = 1 3 S H . S A B C D = 1 3 . 26 3 a . 1 2 a 2 sin 60 ° = 26 a 3 12

19 tháng 5 2019

Đáp án A

Từ giả thiết, ta suy ra góc giữa SC  mặt đáy chính  góc SCA. Suy ra tam giác SAC vuông cân  A,  SA=AC=a.

Thể tích khối chóp 

V = 1 3 S A B C = 1 3 . 3 4 a 2 . a = 3 12 a 3

2 tháng 10 2017

Đáp án là C


23 tháng 4 2017

Đáp án C

15 tháng 12 2019

Đáp án C

 

Kẻ SG vuông góc (ABC)

S.ABC là khối chóp đều

=>ΔABC đều

=>G là trọng tâm, là trực tâm của ΔABC

Gọi giao của AG với BC là D

=>D là trung điểm của BC

ΔABC đều có AD là trung tuyến

nên \(AD=\dfrac{a\sqrt{3}}{2}\)

=>\(AG=\dfrac{a\sqrt{3}}{2}\cdot\dfrac{2}{3}=\dfrac{a\sqrt{3}}{3}\)

ΔSAG vuông tại G nên \(SG=\sqrt{SA^2-AG^2}=\sqrt{b^2-\dfrac{1}{3}a^2}\)

\(V_{S.ABC}=\dfrac{1}{3}\cdot S_{ABC}\cdot SG=\dfrac{1}{3}\cdot\sqrt{b^2-\dfrac{1}{3}a^2}\cdot\dfrac{a^2\sqrt{3}}{4}\)

\(=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{\dfrac{3b^2-a^2}{3}}\)

Thể tích khối tứ diện đều có cạnh bằng a là:

\(V=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a^3\sqrt{2}}{12}\)

27 tháng 2 2017