Tổng lập phương các nghiệm của phương trình 9 x 2 - 2 x - 2 . 1 3 2 x - x 2 = 3 bằng
A.3
B.6
C.-12
D.14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Em kiểm tra lại đề bài, pt này chắc chắn là ko giải được
Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.
Suy ra, phương trình (3) có nghiệm x = 2
Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.
Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7
Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
\(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m^2-3\right)=4-2m\)
Để pt có 2 nghiệm pb : \(m< 2\)
Theo định lí vi - et :
\(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1.x_2=m^2-3\end{matrix}\right.\)
Mà \(x_1=3x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=m-1\\3x^2_2=m^2-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m-1}{4}\\x_2=\pm\dfrac{\sqrt{m^2-3}}{\sqrt{3}}\end{matrix}\right.\)
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
a. Nhân hai vế của phương trình (1) với 24, ta được:\(\frac{7x}{8}\)−5(x−9)⇔\(\frac{1}{6}\)(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=67x8−5(x−9)⇔16(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=6
Vậy phương trình (1) có một nghiệm duy nhất x = 6.
b. Ta có:
2(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+32(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
c. Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2. Do (3) nên phương trình (2) có nghiệm x = 2 cũng có nghĩa là phương trình (a−2)2=a+3(a−2)2=a+3 có nghiệm x = 2. Thay giá trị x = 2 vào phương trình này, ta được(a−2)2=a+3(a−2)2=a+3. Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:
(a−2)2=a+3⇔a=7(a−2)2=a+3⇔a=7
Khi a = 7, dễ thử thấy rằng phương trình (a−2)x=a+3(a−2)x=a+3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
Đặt \(\sqrt[3]{2x-1}=t\Rightarrow2x=t^3+1\)
Ta được hệ: \(\left\{{}\begin{matrix}x^3+1=2t\\t^3+1=2x\end{matrix}\right.\)
\(\Rightarrow x^3-t^3=2t-2x\)
\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2\right)+2\left(x-t\right)=0\)
\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2+2\right)=0\)
\(\Leftrightarrow x=t\) (do \(x^2+xt+t^2+2=\left(x+\dfrac{t}{2}\right)^2+\dfrac{3t^2}{4}+2>0\))
\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3=2x-1\)
\(\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)
Tới đây bấm máy hoặc dùng Viet
Chọn D