Cho tam giác ABC (như hình vẽ)
Điền vào chỗ trống
a) Đoạn thẳng vuông góc với BC là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đường thẳng vuông góc với BC là .......AH
b. Vẽ thêm một cạnh song song với cạnh BC.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
Hình a sai ; Hình b đúng ; Hình c đúng ; Hình d sai
Tên các điểm được thể hiện trong hình dưới:
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét ΔABC có ME//AB
nên CE/CA=CM/CB=1/2
=>E là trung điểm của AC
Xét ΔCAB có MD//AC
nên MD/AC=BD/BA=BM/BC=1/2
=>D là trung điểm của BA
=>MD//CE và MD=CE
=>MCED là hình bình hành
c: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>DE//HM
ΔHAC vuông tại H
mà HE là đường trung tuyến
nên HE=AC/2=MD
Xét tứ giác MHDE có
MH//DE
MD=HE
Do đó;MHDE là hình thang cân
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật.
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Xét ΔCAB có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CEDM có
DM//CE
DM=CE
Do đó: CEDM là hình bình hành
c: Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến
nên HE=AC/2=MD
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔBAC có
E la trung điểm của AC
D là trung điểm của AB
Do đó: ED là đường trung bình
=>ED//BC
hay ED//MH
=>EMHD là hình thang
mà EH=MD
nên EMHD là hình thang cân
a)ta có: góc EAC = góc DAB ( = 90 độ)
=> góc EAC + góc BAC = góc DAB + góc BAC
=> góc EAB = góc DAC
Xét tam giác EAB và tam giác CAD
có: EA = CA ( gt)
góc EAB = góc CAD ( cmt)
AB = AD ( gt)
\(\Rightarrow\Delta EAB=\Delta CAD\left(c-g-c\right)\)
=> EB = CD ( 2 cạnh tương ứng)
( Gọi giao điểm của EB và CD là O; giao điểm của CD và AB là H)
ta có: \(\Delta EAB=\Delta CAD\left(cmt\right)\)
=> góc EBA = góc CDA ( 2 góc tương ứng)
Xét tam giác ADH vuông tại A
có: góc CDA + góc AHD = 90 độ ( 2 góc phụ nhau)
mà góc EBA = góc CDA ( cmt)
góc AHD = góc OHB ( đối đỉnh)
=> góc CDA + góc AHD = góc EBA + góc OHB = 90 độ
=> góc EBA + góc OHB = 90 độ
mà góc EBA, góc OHB là 2 góc phụ nhau
\(\Rightarrow DC\perp BE⋮O\) ( định lí)
b) Xét tam giác EMN và tam giác DAN
có: MN = AN ( gt)
góc ENM = góc DNA ( đối đỉnh)
EN = DN (gt)
\(\Rightarrow\Delta EMN=\Delta DAN\left(c-g-c\right)\)
=> EM = DA ( 2 cạnh tương ứng)
mà DA = AB
=> EM = AB ( = DA)
...
xl bn nha, nhưng mk chỉ bk chứng minh đến đây thoy!
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE
b,
Xét tam giác ADN và tam giác MEN có:
DN=NE (gt)
góc N1= góc N2 ( đ đ )
AN=MN ( gt)
Suy ra tam giác ADN = tam giác MEN (c.g.c)
Suy ra DA=ME Mà DA = AB ( gt) suy ra ME=AB
Ta có;góc DAB + góc EAC = 180 độ
Suy ra Góc A1 + góc A2 =180 độ ( 1 )
Mặt khác tam giác ADN = tam giác MEN suy ra góc E1 = góc D1
Suy ra ME song song vs AD ( 2 góc SLT)
Suy ra góc MEA + góc A2 =180 độ ( TCP ) ( 2 )
Từ 1 và 2 suy ra góc MEA = góc A1
và ME = AB (gt) ; AE = AC (cmt)
Suy ra Tam giác AME = Tam giác CBA ( c.g.c)
AH