C = 5 / 11 . 16 + 5 / 16 . 21 + 5 / 21 . 26 + ... + 5 / 61 . 66
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}=\frac{6}{66}-\frac{1}{66}=\frac{5}{66}\)
\(=\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{61}-\dfrac{1}{66}\)
\(=\dfrac{1}{11}-\dfrac{1}{66}=\dfrac{5}{66}\)
a. \(C=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
b. \(D=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{4}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(C=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-....-\frac{1}{66}\)
\(C=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
\(D=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{100}\right)\)
\(D=\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
R = 5 / 11 * 16 + 5 / 16 * 21 + ...+ 5 / 61 * 66
= 1/11 - 1/16 + 1/16 - 1/21 + ... + 1/61 - 1/66
= 1/11 - 1/66
= 5/66
\(R=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(R=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\( R=\frac{1}{11}-\frac{1}{66}=\frac{6}{66}-\frac{1}{66}=\frac{5}{66}\)
\(A=\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+...............+\dfrac{5}{61.66}\)
\(\Leftrightarrow A=\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+............+\dfrac{1}{61}-\dfrac{1}{66}\)
\(\Leftrightarrow A=\dfrac{1}{11}-\dfrac{1}{66}=\dfrac{5}{66}\)
\(A=\dfrac{5}{11\times16}+\dfrac{5}{16\times21}+\dfrac{5}{21\times26}+...+\dfrac{5}{61\times66}\)
\(=\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+...+\dfrac{1}{61}-\dfrac{1}{66}\)
\(=\dfrac{1}{11}-\dfrac{1}{66}\)
\(=\dfrac{5}{66}\)
~ Học tốt ~
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b)\(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
a,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
ta có:
\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{1.2}-\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...
\(\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}=\frac{99}{100}\)
b,
\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.16}+...+\frac{5}{61.66}\)
ta có:
\(\frac{5}{11.16}=\frac{16-11}{11.16}=\frac{16}{11.16}-\frac{11}{11.16}=\frac{1}{11}-\frac{1}{16}\)
\(\frac{5}{16.21}=\frac{21-16}{16.21}=\frac{21}{16.21}-\frac{16}{16.21}=\frac{1}{16}-\frac{1}{21}\)
...
\(\frac{5}{61.66}=\frac{66-61}{61.66}=\frac{66}{61.66}-\frac{61}{61.66}=\frac{1}{61}-\frac{1}{66}\)
= \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
=\(\frac{1}{11}-\frac{1}{66}\)=\(\frac{5}{66}\)
a, \(\frac{5}{11.16}+\frac{5}{11.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
=\(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
=\(\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
a, A=1/11-1/16+1/16-1/21+1/21-1/26+...+1/61-1/66
= 1/11-1/66=5/66 ( A chính là biểu thức ở phần a)
b, 1/12+1/20+1/30+...+1/110
=1/3.4+1/4.5+1/5.6+..+1/10.11
=1/3-1/4+1/4-1/5+1/5-1/6+...+1/10-1/11
=1/3-1/11=8/33
A= 3/11*16+3/16*21+3/21*26+.....+3/61*66
\(=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{3}{5}\cdot\frac{5}{66}\)
\(=\frac{1}{22}\)
\(A=\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+...+\frac{3}{61.66}\)
\(\Rightarrow A=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(\Rightarrow A=\frac{3}{5}.\frac{5}{66}\)
\(\Rightarrow A=\frac{1}{22}\)
Vậy \(A=\frac{1}{22}\)