Cho hàm số y = f x = a x 4 + b x 2 + c có bảng biến thiên như hình vẽ dưới đây
Tính giá trị của biểu thức P = a + 2 b + 3 c
A. P = − 15
B. P = 8
C. P = − 8
D. P = 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có g ( x ) = f ( 2 x ) - sin 2 x ≤ f ( 2 x ) 2 x ∈ - 2 ; 2 suy ra bảng biến thiên
Dựa vào BBT suy ra f ( 2 x ) ≤ f ( 0 ) ⇒ g ( x ) ≤ f ( 0 ) ∀ 2 x ∈ - 2 ; 2
⇒ m a x [ - 1 ; 1 ] g ( x ) = f ( 0 ) đạt được khi
x = 0 sin 2 x = 0 ⇔ x = 0
Chọn đáp án B.
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)
Bảng biến thiên:
x | -\(\infty\) 5/3 +\(\infty\) |
y | +\(\infty\) 13/3 -\(\infty\) |
b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3
Giá trị nhỏ nhất là y=13/3 khi x=5/3
g ' ( x ) = f ' ( x ) - 1 ; g ' ( x ) = 0 ⇔ f ' ( x ) = 1
Dựa vào bảng biến thiên của hàm số y = f ' ( x ) ta có
f ' ( x ) = 1 ⇔ [ x = - 1 x = x 0 > 1
Bảng xét dấu g ' ( x )
Vậy hàm số g(x)=f(x)-x có một điểm cực trị.
Chọn đáp án D.
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)
Bảng biến thiên là:
x | -\(\infty\) -3/4 +\(\infty\) |
y | -\(\infty\) -29/4 +\(\infty\) |
b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4
GTNN của hàm số là y=-29/4 khi x=-3/4
Đáp án A
Ta có: Đồ thị đi qua điểm (0,c) suy ra c = − 3
Tại x = 1 ⇒ y = a + b + c = − 5 ⇒ a + b = − 2
Do x = 1 là điểm cực trị suy ra y ' 1 = 0 ⇔ 4 a + 2 b = 0
Do đó c = − 3 a = 2 b = − 4 ⇒ P = − 15