K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Đáp án là D

18 tháng 11 2018


3:

Ta sẽ chia M ra làm 3 nhóm

Nhóm 1: \(A=\left\{0;3;6\right\}\)

Nhóm 2: \(B=\left\{1;4;7\right\}\)

Nhóm 3: \(C=\left\{2;5;8\right\}\)

TH1: 1 số A,1 số B, 1 số C

*Nếu số ở A chọn là số 0 thì sẽ có 3*3*2*2*1=36 cách

*Nếu số A chọn khác 0 thì sẽ là 2*3*3*3!=108 cách

=>Có 108+36=144 cách

TH2: 3 số A

=>Có 2*2*1=4 số

TH3: 3 số B

=>Có 3!=6 số

TH4: 3 số C

=>Có 3!=6 số

=>Có 144+4+6+6=148+12=160 số

15 tháng 4 2016

   a2+b2+c2<2(ab+bc+ac)

<=>a2+b2+c2-2ab-2ac-2bc<0

<=>a^2+b^2+c^2-2ab-2ac+2bc-4bc<0

<=>(a-b-c)2-4bc<0

Mà a,b,c là độ dài 3 cạnh của tam giác nên a-b-c<0=>(a-b-c)2<0(1)

bc>0=>4bc>0=>-4bc<0(2)

từ (1) và (2) =>(a-b-c)2-4bc<0

k cho mình nha

15 tháng 4 2016

Theo BĐT tam giác:

(+) a+b > c

<=>(a+b).c > c2<=>ac+bc > c2 (1)

(+)a+c > b

<=>(a+c).b > b2<=>ab+bc > b2 (2)

(+)b+c > a

<=>(b+c).a > a2<=>ab+ac > a2 (3)

Cộng từng vế (1);(2);(3)

=>a2+b2+c2 < ac+bc+ab+bc+ab+ac=2ab+2bc+2ac=2(ab+bc+ca)

=>ĐPCM

19 tháng 2 2019

Độ dài 3 cạnh của 1 tam giác cân nhé , không phải vuông đâu : ) Tớ nhầm !

20 tháng 2 2019

ib riêng tớ giải thích :))))

8 tháng 5 2017

Theo BĐT Schur thì ta có:

\((a+b-c)(b+c-a)(c+a-b)\leq abc\)

Vậy thì giờ chỉ theo AM-GM là xong

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}=3\)

30 tháng 6 2015

\((a+b-c)3 +(b+c-a)3 +(a+c-b)3=a3+b3+c3\). đặt a+b-c=x; b+c-a=y; c+a-b=z

=> ta được x+y+z= a+b+c 

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)=> \(\left(x^2+y^2+z^2-xy-yz-xz\right)=\left(a^2+b^2+c^2-ab-ac-bc\right)\Leftrightarrow\left(x+y+z\right)^2-3\left(xy+yz+xz\right)=\left(a+b+c\right)^2-3\left(ab+ac+bc\right)\)

\(\left(a+b+c\right)^2-3\left(xy+yz+xz\right)=\left(a+b+c\right)^2-3\left(ab+ac+bc\right)\Rightarrow xy+yz+xz=ab+ac+bc\)