Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và A B ' ⊥ B C ' . Tinh thể tích V của khối lăng trụ đã cho
A. V = a 2 6 4
B. V = 7 a 3 8
C. V = a 3 6
D. V = a 3 6 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC
Ta có: R = B C 2 sin A = a 2 sin 60 ° = a 3
Thể tích V của khối trụ ngoại tiếp lăng trụ là:
V = πR 2 h = π a 3 2 . h = πa 2 h 3 .
Đáp án A.
Bán kính đường tròn đáy r = B C 2 sin A = a 3
Bán kính mặt cầu ngoại tiếp lăng trụ R = h 2 2 + r 2 = 2 a 3 ⇒ V = 4 3 π R 3 = 32 3 π a 3 27 .
Đáp án là C
Gọi G là trọng tâm của tam giác ABC.
Do tam giác ABC đều cạnh a nên
Diện tích tam giác ABC bằng a 3 3 4
Do đỉnh A’ cách đều ba đỉnh A, B, C nên A'G ⊥ (ABC) => A'G là đường cao của khối lăng trụ.
Theo giả thiết, ta có A ' A G ^ = 45 0 => ∆ A'GA vuông cân. Tù đó suy ra
Vậy thể tích của khối lăng trụ bằng
Chọn A