Hình vẽ dưới đây là đồ thị của hàm số y = 3 x - 2 x - 1 . Tìm tất cả các giá trị thực của tham số m để phương trình 3 x - 2 x - 1 = m có hai nghiệm phân biệt?
A. -3 < m < 0
B. m < -3
C. 0 < m < 3
D. m > 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có f x = f x v ớ i x ≥ 0 − f x v ớ i x < 0
Đồ thị hàm số y = f x được suy ra từ đồ thị hàm số y = f x gồm 2 phần:
- Phần 1: Phần phía bên trên trục hoành.
- Phần 2: Lấy đối xứng với phần phía dưới trục Ox qua trục Ox (bỏ đi phần phía dưới trục hoành).
Khi đó ta được đồ thị hàm số y = f x như sau:
Phương trình f x = log 3 m có 8 nghiệm phân biệt ⇔ 0 < log 3 m < 2 ⇔ 1 < m < 9
Đáp án A
(*)
Đặt
Yêu cầu bài toán trở thành: Tìm m để phương trình có nghiệm
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kể quả thỏa mãn yêu cầu bài toán
Đáp án D
Từ đồ thị hàm số đã cho (như hình vẽ) ta suy ra đồ thị của hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán
:
Chọn A