K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Ta có: x(x3 - x + 6) > 9

⇔ x4 - x2 + 6x - 9 > 0

⇔ f(x) > 0

thấy f(x) > 0 khi

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập nghiệm của bất phương trình là 

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

24 tháng 11 2019

Khi đó nghiệm chung của 2 phương trình là

Vì x ∈ Z nên x = 3; 4; 5.

21 tháng 7 2018

Nghiệm chung của hai bất phương trình là 3 ≤ x6.

Vì x ∈ Z nên n ∈ {3; 4; 5}.

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1 tháng 9 2019

16 tháng 10 2019

30 tháng 11 2019

Ta có: 3 x + 1 > 4 - x 3 - x > 9 - 6 x ⇔ 4 x > 3 5 x > 6 ⇔ x > 3 4 x > 6 5 ⇔ x > 6 5

Do đó, tập nghiệm của hệ bất phương trình  là   S = 6 5 ; + ∞

5 tháng 9 2017

Cách 1: Điều kiện xác định của bất phương trình là x < 3. Khi đó:

1 - x 3 - x > x - 1 3 - x ⇔ 1 - x > x - 1 ⇔ x - 1 < 0 ⇔ x < 1 .

Kết hợp lại, suy ra nghiệm của bất phương trình đã cho là x < 1.

 Đáp án là C.

Cách 2: Có thể thay các giá trị trên vào bất phương trình, thực chất chỉ cần thay vào x - 1  ( bỏ đi) rồi suy ra kết luận.

31 tháng 3 2020

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

31 tháng 3 2020

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

NV
15 tháng 1

\(\Leftrightarrow x^6-2\left(x^3+3x^2+3x+1\right)-15< 0\)

\(\Leftrightarrow x^6-2\left(x+1\right)^3-15< 0\)

\(\Leftrightarrow x^6< 2\left(x+1\right)^3+15\) (1)

- Với \(x\le-2\Rightarrow x+1\le-1\Rightarrow2\left(x+1\right)^3+15\le13\)

Trong khi đó \(x^6\ge2^6=32>13\) (ktm(1))

\(\Rightarrow\) Không tồn tại \(x\le-2\) thỏa mãn BPT (2)

- Với \(x\ge3\Rightarrow x^2\ge3x=2x+x\ge2x+3>2x+2\)

\(\Rightarrow x^2>2\left(x+1\right)\Rightarrow x^6>2^3.\left(x+1\right)^3=8\left(x+1\right)^3\) (3)

(1);(3) \(\Rightarrow2\left(x+1\right)^3+15>8\left(x+1\right)^3\)

\(\Rightarrow6\left(x+1\right)^3< 15\Rightarrow\left(x+1\right)^3< \dfrac{5}{2}< 8\)

\(\Rightarrow x+1< 2\Rightarrow x< 1\) (mâu thuẫn giả thiết \(x\ge3\))

\(\Rightarrow\) Không tồn tại \(x\ge3\) thỏa mãn BPT (4)

Từ (2);(4) \(\Rightarrow\) các giá trị nguyên của x nếu có thỏa mãn BPT chúng sẽ thuộc \(-2< x< 3\)

\(\Rightarrow x=\left\{-1;0;1;2\right\}\)

Thay vào BPT ban đầu thử thấy đều thỏa mãn

Vậy \(x=\left\{-1;0;1;2\right\}\)