K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Ta có ∫ (xcosx)’dx = (xcosx) và ∫ cosxdx = sinx. Từ đó

∫ xsinxdx = - ∫ [(xcosx)’ – cosx]dx = -∫ (xcosx)’dx + ∫ cosxdx = - xcosx + sinx + C.

3 tháng 11 2017

Chọn C

26 tháng 1 2019

Đáp án C

30 tháng 5 2017

Đáp án C

NV
24 tháng 4 2022

\(I=\int\limits^{\dfrac{\pi}{2}}_0\left(1+cosx+x.cosx\right)e^{sinx}dx=\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx+\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right).cosx.e^{sinx}dx=I_1+I_2\)

Xét \(I_2\), đặt \(\left\{{}\begin{matrix}u=x+1\\dv=cosx.e^{sinx}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^{sinx}\end{matrix}\right.\)

\(\Rightarrow I_2=\left(x+1\right).e^{sinx}|^{\dfrac{\pi}{2}}_0-\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx=\left(\dfrac{\pi}{2}+1\right)e-1-I_1\)

\(\Rightarrow I=I_1+\left(\dfrac{\pi}{2}+1\right)e-1-I_1=\left(\dfrac{\pi}{2}+1\right)e-1\)

24 tháng 4 2022

sao \(dv=cosx.e^{sinx}dx\) lại ra \(v=e^{sinx}\) vậy ạ?

18 tháng 4 2021

\(y'=\left(\sin^4x\right)'\cos x+\sin^4x\left(\cos x\right)'=4\sin^3x.\cos^2x-\sin^5x\)

NV
18 tháng 4 2021

\(y'=4sin^3x.cosx.cosx-sinx.sin^4x=4sin^3x.cos^2x-sin^5x\)

18 tháng 7 2018

Chọn đáp án A

Ta F x = x cos x  là một nguyên hàm của hàm số f x  nên suy ra