Cho hai đường thẳng chéo nhau d và d’. Đoạn thẳng AB có độ dài bằng a trượt trên d, đoạn thẳng CD có độ dài bằng b trượt trên d’. Chứng minh rằng khối tứ diện ABCD có thể tích không đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi h là độ dài đường vuông góc chung của d và d’, α là góc giữa hai đường thẳng d và d’. Qua B, A, C dựng hình bình hành BACF. Qua A,C, D dựng hình bình hành ACDE.
Khi đó CFD.ABE là một hình lăng trụ tam giác. Ta có:
VDABC=VDFCB=VBCDF
= VCFD.ABE
= hSFCD= h. ab. sinα
=h. ab. sinα (là một số không đổi).
Xem thêm tại: http://loigiaihay.com/cau-6-trang-26-sgk-hinh-hoc-12-c47a2782.html#ixzz4cxsiVwHA
a) Trên tia ab, điểm C nằm giữa 2 điểm A và B vì AC<AB (AC=3cm, AB=6cm)
b) Vì C nằm giữa A,B nên AC+CB=AB (AC=3cm, AB=6cm)
3+CB=6
CB=6-3
CB=3
=>CB=3cm
c) C là trung điểm của AB vì:
- C nằm giữa A,B (câu a)
- C cách đều A,B \(AC=CB=\frac{AB}{2}=\frac{6}{2}=3\)
d) Trên tia ab, điểm B nằm giữa C,D vì hai tia đối nhau BC,BD đều chung gốc B và trên cùng đường thẳng
Vì B nằm giữa C,D nên CB + BD= CD (CB=3cm, BD=2cm)
3+2=CD
3+2=5
=>CD=5cm
Dựng BE song song và bằng DC, DF song song và bằng BA. Khi đó, ABE.FDC là một lăng trụ đứng.
Ta có:
Gọi h là khoảng cách hai đường thẳng d và d’, gọi α là góc tạo bởi hai đường thẳng d và d’.
Lần lượt vẽ hai hình bình hành BACF và ACDE.
Khi đó, ABE.CFD là hình lăng trụ tam tam giác có chiều cao h; AE = CD = b và
Gọi S là diện tích đáy của hình lăng trụ .
Ta chia hình lăng trụ ABE. CFD thành ba hình chóp tam giác là: D. ABE, B. CFD, D.ABC. Ta có:
Do đó, thể tích khối tứ diện ABCD không đổi.