Tìm số giao điểm của mặt phẳng (α): x + y + z - 3 = 0 với đường thẳng d trong các trường hợp sau:
a ) d : x = 2 + t y = 3 - t z = 1 b ) d : x = 1 + 2 t y = 1 - t z = 1 - t c ) x = 1 + 5 t y = 1 - 4 t z = 1 + 3 t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của ( α ) ta được: (3 – t) + (2 – t) + (1 + 2t) – 6 = 0 ⇔ 0t = 0
Phương trình luôn thỏa mãn với mọi t. Vậy d chứa trong ( α ) .
Đường thẳng d vuông góc với mp α x+y-z+5=0 nên đường thẳng d có vecto chỉ phương n → = 1 ; 1 ; - 1
Vậy pt tham số của đường thẳng d là: x = 2 + t y = - 1 + t z = 3 - t
Thay x, y, z trong phương trình tham số của đường thẳng d vào phương trình tổng quát của mặt phẳng ( α ) ta được: t + 2(1 + 2t) + (1 – t) – 3 = 0
⇔ 4t = 0 ⇔ t = 0
Vậy đường thẳng d cắt mặt phẳng ( α ) tại M 0 (0; 1; 1)
Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của ( α ) ta được: (2 – t) +(2 + t) + 5 = 0 ⇔ 0t = -9
Phương trình vô nghiệm, vậy đường thẳng d song song với ( α )
Xét phương trình:
2(1 + 2t) + (t) + (−2 – 3t) – 1 = 0 ⇔ 2t – 1= 0 ⇔ t = 1/2
Vậy đường thẳng d cắt mặt phẳng ( α ) tại điểm M(2; 1/2; −7/2).
Ta có vecto pháp tuyến của mặt phẳng ( α ) và vecto chỉ phương của đường thẳng d lần lượt là n α → = (2; 1; 1) và a d → = (2; 1; −3).
Gọi a ∆ → là vecto pháp tuyến của Δ, ta có a ∆ → ⊥ n α → và a ∆ → ⊥ a d →
Suy ra a ∆ → = n α → ∧ n d → = (−4; 8; 0) hay a ∆ → = (1; −2; 0)
Vậy phương trình tham số của ∆ là
Đáp án B
Phương pháp:
thay tọa độ điểm B vào phương trình ( α ) => 1 phương trình 2 ẩn a, b.
Sử dụng công thức tính khoảng cách
lập được 1 phương trình 2 ẩn chứa a, b.
+) Giải hệ phương trình tìm a,b => Toạ độ điểm B => Độ dài AB.
Dế thấy
Ta có
Lại có
Đường thẳng d đi qua M(0;0;-1), có u → = ( 1 ; 2 ; 2 )
Do đó
Vậy AB = 7 2
a) Xét phương trình: (2 + t) + (3 - t) + 1 – 3 = 0
⇔ 3 = 0(vô nghiệm) ⇒ mặt phẳng (α)và d không có điểm chung
b) Xét phương trình: (1 + 2t) + (1 - t) + (1 - t) – 3 = 0
⇔ 0 = 0(vô số nghiệm) ⇒ d ∈ (α)
c) Xét phương trình: (1 + 5t) + (1 - 4t) + (1 + 3t) – 3 = 0
⇔ 4t = 0 ⇔ t = 0 ⇒ mặt phẳng (α)và d có 1 điểm chung