Chứng minh các đẳng thức sau: a + b b 2 a 2 b 4 a 2 + 2 a b + b 2 = a v ớ i a + b > 0 v à b ≠ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
\(BĐVT:\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)
\(=a^2+b^2+a^2+b^2\)
\(=2\left(a^2+b^2\right)\left(BVP\right)\left(đpcm\right)\)
Bài làm:
a) \(\left(a+b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2+\left(b+c-a\right)^2\)
\(=4\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca+ab-bc-ca+ca-bc-ab+bc-ab-ca\right)\)
\(=4\left(a^2+b^2+c^2\right)+2.0\)
\(=4\left(a^2+b^2+c^2\right)\)
b) \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
a) VT = ( a + b + a − b ) ( a + b − a + b ) 4 = 2 a . 2 b 4 = 4 = VP => đpcm.
b) VP = x 2 + 2 xy + y 2 + x 2 – 2 xy + y 2 = 2 ( x 2 + y 2 ) = VT => đpcm.
\(a,\left(a^2-b^2\right)^2+4\left(ab\right)^2=a^4-2a^2b^2+b^4+4a^2b^2\\ =a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\\ b,\left(a^2+b^2\right)\left(x^2+y^2\right)\\ =a^2x^2+a^2y^2+b^2x^2+b^2y^2\\ \left(ax+by\right)^2=a^2x^2+2axby+b^2y^2\\ \Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ne\left(ax+by\right)^2\)
Hoặc áp dụng BĐT Bunhiacopski:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Dấu \("="\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)
a) Ta có:
\(VT=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)
\(=a^2+2ab+b^2-4ab\)
\(=\left(a+b\right)^2-4ab=VP\left(dpcm\right)\)
b) Ta có:
\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=\left(x^2+y^2\right)+\left(x^2+y^2\right)\)
\(=2\left(x^2+y^2\right)=VP\left(dpcm\right)\)
a/ -(b-a)^3= -(b^3-3b^2a+3ba^2-a^3)
= -b^3+3ab^2a-3ba^2+a^3
= (a-b)^3
b/ tương tự ta dùng hằng đẳng thức để chứng minh
a) a - b = - (b - a) = (-1)*(b - a)
=> (a - b)3 = [(-1)*(b - a)]3 = (-1)3 * (b - a)3 = -(b - a)3
b) -(a + b) = (- a - b)
=> (-1)2 * (a + b)2 = (-a - b)2
=> (-a -b)2 = (a + b)2
Biến đổi vế trái:
(vì a + b > 0 nên |a + b| = a + b; b2 > 0)