Chứng minh các đẳng thức sau: x 6 x + 2 x 3 + 6 x : 6 x = 2 1 3 v ớ i x > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a) Biến đổi vế trái thành và làm tiếp.
b) Biến đổi vế trái thành và làm tiếp
a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)
Vậy đẳng thức trên đc chứng minh
b) Biến đổi vế trái ta có:
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x}\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)
Vậy đẳng thức trên đc chứng minh
1 ) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)
2 ) \(x^2+3x+3=x^2+3x+\dfrac{9}{4}+\dfrac{3}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)
3 ) \(x^2+y^2+2\left(x-2y\right)+6\)
\(=x^2+y^2+2x-4y+6\)
\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)
1) x2 +x+1
= (x2 +2.x.1/2 +1/4) +3/4
= (x+1/2)2+3/4 \(\ge\dfrac{3}{4}\forall x\in R\left(Vì:\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\in R\right)\)
2) x2 + 3x+3
= (x2 +2.x.3/2 + 9/4)+ 3/4
= ( x+ 3/2)2 + 3/4 \(\ge\dfrac{3}{4}\forall x\in R\left(Vì:\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\in R\right)\)
a: \(VT=\dfrac{3\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}-\dfrac{4\sqrt{6}}{2}\)
\(=\dfrac{-\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}=\dfrac{-3\sqrt{6}+4\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)
b: \(VT=\dfrac{\left(\sqrt{6x}+\dfrac{\sqrt{6x}}{3}+\sqrt{6x}\right)}{\sqrt{6x}}\)
\(=1+\dfrac{1}{3}+1=2\dfrac{1}{3}\)
Biến đổi vế trái: