Tìm tập hợp tất cả các giá trị thực của x để mệnh đề P: “2x-1 ≥ 0 ” là mệnh đề sai:
A. x > 1 2
B. x ≥ 1 2
C. x < 1 2
D. x ≤ 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+5x+4=0\\ \Leftrightarrow x^2+x+4x+4=0\\ \Leftrightarrow x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+4\right)\left(x+1\right)=0\\ \Leftrightarrow x+4=0.hoặc.x+1=0\\ \Leftrightarrow x=-4.hoặc.x=-1\\ Vậy.để.mệnh.đề.đó.là.mệnh.đề.sai:\\ \Leftrightarrow x\ne-4.hoặc.x\ne-1\)
a) \(P\left(x\right)=7x^2+2x-5\)
+) Với x = -1. Ta có: \(P\left(-1\right)=7.\left(-1\right)^2+2.\left(-1\right)-5=0\)
=> \(P\left(x\right)=7x^2+2x-5\) là mệnh đề đúng với x=-1
+) Với x =1 . Ta có: \(P\left(1\right)=7.1^2+2.1-5=4\ne0\)
=> \(P\left(x\right)=7x^2+2x-5\) là mệnh đề sai với x=1
b) Làm tương tự chọn ra hai giá trị
Bài 1:
a/ Với \(x=0\Rightarrow0-0+1>0\) đúng
Vậy mệnh đề đúng
Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)
Hoặc: \(∄x\in R,x^3-x^3+1>0\)
b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)
Vậy mệnh đề đã cho là đúng
Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)
Câu 2:
a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)
\(\Rightarrow\) Mệnh đề sai
b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)
\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)
Câu 3:
P là mệnh đề đúng
\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"
\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"
\(\overline{P}\) là mệnh đề sai
Chứng minh P đúng:
Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\) và \(b\ne0\)
\(\Rightarrow2x=\frac{2a}{b}\)
Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ
b/ Mệnh đề đảo của P:
" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"
Chứng minh tương tự như trên
c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"
Bài 4:
a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)
b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)
a)
+) \(x = \sqrt 2 \) ta được mệnh đề là một mệnh đề đúng.
+) \(x = 0\) ta được mệnh đề là một mệnh đề sai.
b)
+) \(x = 0\) ta được mệnh đề là một mệnh đề đúng.
+) Không có giá trị của x để là một mệnh đề sai do \({x^2} + 1 > 0\) với mọi x.
c) chia hết cho 3” (n là số tự nhiên).
+) \(n = 1\) ta được mệnh đề chia hết cho 3” là một mệnh đề đúng.
+) \(n = 5\)ta được mệnh đề chia hết cho 3” là một mệnh đề sai.
1/ Mệnh đề phủ định:
\(\overline{A}=\) "\(\forall n\in N:\) 3n+1 là số chẵn"
Mệnh đề phủ định là mệnh đề sai, ví dụ với \(n=2\) thì \(3n+1=7\) là số lẻ
2/ Mệnh đề đúng là mệnh đề (I)
Các mệnh đề (II), (III) sai do các kí hiệu {3;4}; {a,3,b} là các kí hiệu tập hợp, ko có quan hệ tập này "thuộc" tập kia
3/ Các tập X thỏa mãn:
\(\left\{1;3;4\right\};\left\{0;1;3;4\right\};\left\{1;2;3;4\right\};\left\{0;1;2;3;4\right\}\)
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x^2=1\) thì \(x=1\)". Mệnh để đảo là "Nếu \(x=1\) thì \(x^2=1\)"
b) Mệnh đề đảo "Nếu \(x=1\) thì \(x^2=1\) là đúng
c) Với \(x=-1\) thì mệnh đề \(\left(P\Rightarrow Q\right):\)sai
a) Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).
Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.
Mệnh đề R đúng vì \(x = - 1 + \sqrt 2 \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)
b) Có thể viết lại các mệnh đề trên như sau:
P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”
Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”
R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”
Đáp án C