K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2022

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (cmt).

\(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)

+ MB = NC (gt).

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).

Xét tam giác ABC có: AB = AC (cmt).

\(\Rightarrow\) Tam giác ABC cân tại A.

b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)

Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{​​}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)

Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:

+ MB = NC (gt).

\(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)

\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).

c/ Tam giác MBH = Tam giác NCK (cmt).

\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).

Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).

\(\Rightarrow\) Tam giác OMN tại O.

 

Câu 2: 

1: \(\Leftrightarrow x\cdot\dfrac{7}{2}=\dfrac{9}{2}+3=\dfrac{15}{2}\)

hay x=15/7

2: \(\Leftrightarrow x=\dfrac{5}{2}\cdot\dfrac{8}{5}=4\)

3: \(\Leftrightarrow x=\dfrac{-11\cdot10}{5}=-11\cdot2=-22\)

4: =>2x=90

hay x=45

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:
a. $(x^2-1)(x^2+2x)=x^4+2x^3-x^2-2x$

b. $(2x-1)(3x+2)(3-x)=(6x^2+4x-3x-2)(3-x)$

$=(6x^2+x-2)(3-x)=18x^2-6x^3+3x-x^2-6+2x$

$=-6x^3+17x^2+5x-6$

c.

$(x+3)(x^2+3x-5)=x^3+3x^2-5x+3x^2+9x-15$

$=x^3+6x^2+4x-15$

d.

$(x+1)(x^2-x+1)=x^3+1^3=x^3+1$

e.

$(2x^3-3x-1)(5x+2)=10x^4+4x^3-15x^2-6x-5x-2$

$=10x^4+4x^3-15x^2-11x-2$

f.

$(x^2-2x+3)(x-4)=x^3-4x^2-2x^2+8x+3x-12$

$=x^3-6x^2+11x-12$
 

 

a: AD+DB=AB

AE+EC=AC

mà DB=EC và AB=AC

nên AD=AE

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

b: Xét ΔABE và ΔACD có

AB=AC

góc A chung

AE=AD

=>ΔABE=ΔACD

c: Xét ΔIDB và ΔIEC có

góc IDB=góc IEC

DB=EC

góc IBD=góc ICE

=>ΔIDB=ΔIEC

d: Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

=>ΔAIB=ΔAIC

=>góc BAI=góc CAI

=>AI là phângíac của góc BAC

e: AB=AC

IB=IC

=>AI là trung trực của BC

=>AI vuông góc BC

Ta có: \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\cdot\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)}\)

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\cdot\dfrac{x+y+z}{xyz}}\)

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)