giá trị biểu thức ( x^2 -1) .( x^2 +1) - x.(x^3 + y^2) khi x= 2021^2 và y= 1/2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|x-2021\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-2021\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-2021\right|+9\ge9\forall x\)
Dấu '=' xảy ra khi x=2021
b) Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left|y+1\right|\ge0\forall y\)
Do đó: \(\left|x-2\right|+\left|y+1\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|+\left|y+1\right|+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi (x,y)=(2;-1)
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
Ta có: \(P=\sqrt{a^2+a}+\sqrt{b^2+b}+\sqrt{c^2+c}\)
\(=\sqrt{a\left(a+1\right)}+\sqrt{b\left(b+1\right)}+\sqrt{c\left(c+1\right)}\)
\(=\frac{1}{2}\left[\sqrt{4a\left(a+1\right)}+\sqrt{4b\left(b+1\right)}+\sqrt{4c\left(c+1\right)}\right]\)
\(\le\frac{1}{2}\left(\frac{4a+a+1}{4}+\frac{4b+b+1}{4}+\frac{4c+c+1}{4}\right)\)
\(=\frac{1}{2}\cdot\frac{5\left(a+b+c\right)+3}{4}=\frac{1}{2}\cdot4=2\)
Dấu "=" xảy ra khi: a = b = c = 1/3
Lại có: \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a\ge a^2\\b\ge b^2\\c\ge c^2\end{cases}}\)
\(\Rightarrow P\ge\sqrt{a^2+a^2}+\sqrt{b^2+b^2}+\sqrt{c^2+c^2}=\sqrt{2}\left(a+b+c\right)=\sqrt{2}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=1\\b=c=0\end{cases}}\) và các hoán vị
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$