K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

Chọn đáp án A

Gọi O là giao điểm của AC và BD.

Áp dụng định lí Pytago vào tam giác vuông ABC có:

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lí Pytago vào tam giác vuông SAO có:

S O 2 = S A 2 - A O 2 = 13 2 - 5 2 = 144  nên SO = 12cm

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

16 tháng 5 2017

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
7 tháng 6 2019

a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)

Lại có: SH2 = SC2 - HC2 (Pytago)

b) Gọi K là trung điểm của BC

Ta có: SK2 = SH2 + HK2 (Pytago)

5 tháng 12 2019

Giải bài 11 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) S.ABCD là hình chóp tứ giác đều

⇒ ABCD là hình vuông

⇒ AC = AB√2 = 20√2 (cm).

SO là chiều cao của hình chóp

⇒ O = AC ∩ BD và SO ⊥ (ABCD)

⇒ SO ⊥ AO

⇒ ΔSAO vuông tại O

⇒ SO2 + OA2 = SA2

⇒ SO2 = SA2 – OA2 = SA2 – (AC/2)2 = 242 - Giải bài 11 trang 13sup2/sup SGK Toán 8 Tập sup2/sup | Giải toán lớp 8 = 376

⇒ SO = √376 ≈ 19,4 (cm).

Thể tích hình chóp:

Giải bài 11 trang 13sup2/sup SGK Toán 8 Tập sup2/sup | Giải toán lớp 8

b) Gọi H là trung điểm của CD

SH2 = SD2 – DH2 = 242 – Giải bài 11 trang 13sup2/sup SGK Toán 8 Tập sup2/sup | Giải toán lớp 8 = 476

⇒ SH = √476 ≈ 21,8 (cm)

⇒ Sxq = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).

Sđ = AB2 = 202 = 400 (cm2 )

⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).

7 tháng 5 2023

\(V_{chóp.tứ.giác.đêu}=\dfrac{1}{3}.S_{đáy}.h\\ \Leftrightarrow400=\dfrac{1}{3}.a^2.h=\dfrac{1}{3}.10^2.h\\ \Leftrightarrow h=\dfrac{400\times3}{10^2}=12\left(mm\right)\)

14 tháng 6 2021

a) Áp dụng định lý Pytago, ta được:

AC2=AB2+BC2=2AB2AC2=AB2+BC2=2AB2

⇒AC=AB√2=10√2cm⇒AC=AB2=102cm

b) Gọi MM là trung điểm ABAB

⇒MA=MB=MO=5cm⇒MA=MB=MO=5cm

⇒SM⊥AB⇒SM⊥AB (ΔSAB∆SAB cân tại SS)

⇒SM=√SA2−AM2=√122−52=√119cm⇒SM=SA2−AM2=122−52=119cm

⇒SO=√SM2−OM2=√119−52=√94cm⇒SO=SM2−OM2=119−52=94cm

⇒VS.ABCD=13.SABCD.SO=13.AB2.SO=102.943=94003cm3