Cho hai hàm số f x = − 2 x 3 v à h x = 10 – 3 x . So sánh f ( − 2 ) v à h ( − 1 )
A. f ( − 2 ) < h ( − 1 )
B. f ( − 2 ) h ( − 1 )
C. f ( − 2 ) = h ( − 1 )
D. f ( − 2 ) > h ( − 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Thay x = -2 vào hàm số f(x) = -2 x 3 ta được f(-2) = -2.(-2) = 16 .
Thay x = -1 vào hàm số h(x) = 10 - 3x ta được h(-1) = 10 - 3.(-1) = 13.
Nên f(-2) > h(-1).
Đáp án D
Thay x = -2 vào hàm số f(x) = -2 x 3 ta được f(-2) = -2.(-2) = 16 .
Thay x = -1 vào hàm số h(x) = 10 - 3x ta được h(-1) = 10 - 3.(-1) = 13.
Nên f(-2) > h(-1) .
\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)
Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R
Mà \(2+\sqrt{3}< 3+\sqrt{3}\)
Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)
Vì hàm số f(x)=5x-2 đồng biến trên R nên nếu \(x_1< x_2\) thì \(y_1< y_2\)
mà \(3>\sqrt{8}\)
nên \(f\left(3\right)>f\left(\sqrt{8}\right)\)
Ta có : \(f\left(3\right)=5\sqrt{9}-2\)
\(f\left(\sqrt{8}\right)=5\sqrt{8}-2\)
=> \(f\left(3\right)>f\left(8\right)\)
Vì f(x)=5x-2 đồng biến trên R nên khi \(x_1< x_2\) thì \(y_1< y_2\)
mà \(3>\sqrt{8}\)
nên \(f\left(3\right)>f\left(\sqrt{8}\right)\)
f(-3/2) = 1 - 2.(-3/2) = 1 - -3 = 4
f(3/2) = 1 - 2.(3/2) = 1 - 3 = -2
=> f(-3/2) > f(3/2)
Thay x = − 1 vào hàm số f x = 6 x 4 ta được f − 1 = 6. − 1 4 = 6
Thay x = 2 3 vào hàm số h ( x ) = 7 − 3. x 2 ta được h ( x ) = 7 − 3. x 2
Nên f − 1 = h 2 3
Đáp án cần chọn là: A
a) Hệ số a là: a=1
\(f(0) = {0^2} - 4.0 + 3 = 3\)
\(f(1) = {1^2} - 4.1 + 3 = 0\)
\(f(2) = {2^2} - 4.2 + 3 = - 1\)
\(f(3) = {3^2} - 4.3 + 3 = 0\)
\(f(4) = {4^2} - 4.4 + 3 = 3\)
=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a
b) Nhìn vào đồ thị ta thấy
- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành
- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành
- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành
c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a
- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a
- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a
Thịnh ơi, có gì mấy câu trả lời SGK em giúp anh trình bày đầy đủ và làm đẹp nhé, có Latex đầy đủ á. Mình làm hướng đến cộng đồng, em giúp hoc24 nhé!
a) Ta có: \(\Delta x = x - {x_0},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)
\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) + g(x) - f({x_0}) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - g\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\)
b) \(h'({x_0})\) = \(f'({x_0}) + g'({x_0})\)
Thay x = − 2 vào hàm số f x = − 2 x 3 ta được f − 2 = − 2. − 2 3 = 16
Thay x = − 1 vào hàm số h ( x ) = 10 – 3 x ta được h ( − 1 ) = 10 – 3 ( − 1 ) = 13
Nên f ( − 2 ) > h ( − 1 )
Đáp án cần chọn là: D