Cho cấp số nhân u n với u 1 = 1 , công bội q = 2 và cấp số cộng v n có v 1 = 2 công sai d = 2. Hỏi có tất cả bao nhiêu số có mặt đồng thời trong 1000 số hạng đầu tiên của cả hai cấp số cộng nói trên?
A. 9
B. 10
C. 11
D. 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)
Đáp án B
Phương pháp: Dựa vào định nghĩa và các tính chất của các số cộng và cấp số nhân.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Theo giả thiết thì ta được một cấp số cộng có n+2 số hạng với u 1 = − 3 , u n + 2 = 23.
Khi đó u n + 2 = u 1 + n + 1 d ⇔ n + 1 = u n + 2 − u 1 d = 23 − − 3 2 = 13 ⇔ n = 12
Chọn đáp án A.
1. Gọi công bội của csn đó là $q$ thì:
$u_6=q^4u_2$
$\Leftrightarrow 32=q^4.2\Leftrightarrow q^4=16$
$\Leftrightarrow q=\pm 2$
2.
$u_{2019}=q^{2018}u_1=2.3^{2018}$
Suy ra có 11 giá trị n nên có 11 phần tử bằng nhau. Chọn C.