Cho hình chóp S.ABC có ABC là tam giác đều cạnh a và SA vuông góc với đáy. Góc tạo bởi SB và mặt phẳng (ABC) bằng 60 o . Tính khoảng cách từ A đến mặt phẳng (SBC)
A. a 15 5
B. a 15 3
C. 3 a 5
D. 5 a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác định được
Khi đó ta tính được
Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật
=> AB//CD nên
Xét tam giác vuông SAD có
Chọn C.
Xác định được
Do M là trung điểm của cạnh AB nên
Tam giác vuông SAM, có
Chọn B.
Đáp án A
Gọi I,H lần lượt là hình chiếu vuông góc của A trên BC, SI, khi đó: d(A, (SBC)) =AH
Tam giác ABC đều cạnh a nên AI = a 3 2
Khi đó xét tam giác SAI :
Đáp án C
Phương pháp:
- Xác định góc giữa hai mặt phẳng S.ABC bởi định nghĩa:
Góc giữa hai mặt phẳng là góc giữa hai đường thẳng nằm trong hai mặt phẳng mà cùng vuông góc với giao tuyến.
- Tính thể tích khối chóp theo công thức
V = 1 3 S h
Chọn A
Gọi M là trung điểm BC
Gọi K là hình chiếu của A trên SM , suy ra AK ⊥ SM. (1)
Kẻ A H ⊥ B C và A H ⊥ S I . Khi đó A H ⊥ S B C ⇒ d A , S B C = A H
Ta có A I = a 3 2 (do ∆ A B C đều cạnh a)
và
S B A B C = S B A ^ = 60 o ⇒ S A = A B . tan 60 = a 3
Vậy d A S B C = A H = S A . A I S A 2 + A I 2 = a 15 5
Đáp án A