Tìm 5 giá trị của x sao cho: 0 , 4 < x < 0 , 41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Để 4.( x - 8 ) < 0 <=> 4 và x - 8 trái dấu
Mà 4 > 0 => x - 8 < 0 => x < 8
Vậy x < 8
b ) Để -3 ( x - 2 ) < 0 <=> - 3 và x - 2 trái dấu
Mà - 3 < 0 => x - 2 > 0 => x > 2
Vậy x > 2
a) \(4.\left(x-8\right)< 0\)
Vì 4 > 0 nên để thỏa mãn 4.(x-8) < 0
Thì \(x-8< 0\Rightarrow x< 8\)
Ta chọn bất kì x = {7;6;5;4;3} (hoặc bạn có thể chọn các số khác chỉ cần nhỏ hơn 8)
b) \(-3.\left(x-2\right)< 0\)
Vì -3 < 0 nên để thỏa mãn -3.(x-2) < 0
thì x - 2 phải lớn hơn 0
<=> x > 2
Ta có thể chọn bất kì: x = {3;4;7;10;9}
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
Tìm 4 giá trị của x sao cho
0, 18 < x < 0,19
Ta có: 0,18 < x < 0,19
Bốn giá trị của x là:
\(0,181;0,182;0,185;0,188\)
\(a,A=\dfrac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}\\ A=\dfrac{7x+35}{\left(x-1\right)\left(x+5\right)}=\dfrac{7\left(x+5\right)}{\left(x-1\right)\left(x+5\right)}=\dfrac{7}{x-1}\\ b,A\in Z\\ \Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\left(tm\right)\\ b,A< 0\Leftrightarrow x-1< 0\left(7>0\right)\\ \Leftrightarrow x< 1;x\ne-5\\ c,\left|A\right|=3\Leftrightarrow\dfrac{7}{\left|x-1\right|}=3\Leftrightarrow\left|x-1\right|=\dfrac{7}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}+1=\dfrac{10}{3}\left(tm\right)\\x=-\dfrac{7}{3}+1=-\dfrac{4}{3}\left(tm\right)\end{matrix}\right.\)
Nếu giải cụ thể ra thì nó thế này :
Vì tích hai số nguyên > 0 nên chúng cùng dấu.
Xét TH1 : \(\hept{\begin{cases}x+7>0\\4-x>0\end{cases}}\) <=> \(\hept{\begin{cases}x>-7\\x< 4\end{cases}}\) <=> \(-7< x< 4\)
Xét TH2 : \(\hept{\begin{cases}x+7< 0\\4-x< 0\end{cases}}\) <=> \(\hept{\begin{cases}x< -7\\x>4\end{cases}}\) ( Vô lí )
Vậy -7<x<4.
a) ĐKXĐ: \(x\ne-10;x\ne0;x\ne-5\)
b) \(P=\dfrac{x^2+2x}{2x+20}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+2x}{2\left(x+10\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+2x\right)\left(x+5\right)}{2x\left(x+10\right)\left(x+5\right)}+\dfrac{2\left(x-5\right)\left(x+10\right)}{2x\left(x+10\right)\left(x+5\right)}+\dfrac{\left(50-5x\right)\left(x+10\right)}{2x\left(x+5\right)\left(x+10\right)}\)
\(=\dfrac{x^4+7x^3+10x^2+2x^2+10x-100+500-5x^2}{2x\left(x+10\right)\left(x+5\right)}\)
\(=\dfrac{x^4+7x^3+7x^2+10x+400}{2x\left(x+10\right)\left(x+5\right)}\)
c) \(P=0\Rightarrow x^4+7x^3+7x^2+10x+400=0\Leftrightarrow...\)
Số xấu thì câu c, d làm cũng như không. Bạn xem lại đề.
0 , 4 < x < 0 , 41
x = 0 , 401 x = 0 , 402 x = 0 , 403 x = 0 , 404 x = 0 , 405