tinh nhanh: 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/10(1+2+3+...+20)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
= \(1-\frac{1}{7}\)
= \(\frac{7}{7}-\frac{1}{7}\)
= \(\frac{6}{7}\)
2) \(\frac{7}{4}-x.\frac{4}{3}=\frac{5}{19}\)
\(x.\frac{4}{3}=\frac{7}{4}-\frac{5}{19}\)
\(x.\frac{4}{3}=\frac{133}{76}-\frac{20}{76}\)
\(x.\frac{4}{3}=\frac{113}{76}\)
\(x=\frac{113}{76}:\frac{4}{3}\)
\(x=\frac{399}{304}\)
VẬY \(x=\frac{399}{304}\)
b) \(\left(x+\frac{3}{4}\right).\frac{5}{7}=\frac{10}{9}\)
\(\left(x+\frac{3}{4}\right)=\frac{10}{9}:\frac{5}{7}\)
\(x+\frac{3}{4}=\frac{14}{9}\)
\(x=\frac{14}{9}-\frac{3}{4}\)
\(x=\frac{29}{36}\)
Vậy \(x=\frac{29}{36}\)
c) \(x.\frac{1}{2}+\frac{3}{2}.x=\frac{4}{5}\)
\(x.\left(\frac{1}{2}+\frac{3}{2}\right)=\frac{4}{5}\)
\(x.2=\frac{4}{5}\)
\(x=\frac{4}{5}:2\)
\(x=\frac{2}{5}\)
Vậy \(x=\frac{2}{5}\)
Chúc bạn học tốt !!!
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+...+\frac{1}{20}.20.21:2\)
=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}=\frac{2+3+4+...+21}{2}=\frac{230}{2}=115\)
`1/2+2/4+3/6+4/8+5/10+6/12`
`=1/2+1/2+1/2+1/2+1/2+1/2`
`=1/2*6=3`
`1/3+1/4+1/5+8/10+20/15+20/30`
`=(1/3+1/4)+(1/5+4/5)+(4/3+2/3)`
`=7/12+1+2`
`=7/12+3=43/12`
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{6}+\dfrac{4}{8}+\dfrac{5}{10}+\dfrac{6}{12}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\)
\(=\dfrac{1}{2}\times6=3\)
\(------\)
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{8}{10}+\dfrac{20}{15}+\dfrac{20}{30}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{4}{5}+\dfrac{4}{3}+\dfrac{2}{3}\)
\(=\left(\dfrac{1}{3}+\dfrac{4}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{5}+\dfrac{4}{5}\right)+\dfrac{1}{4}\)
\(=\dfrac{7}{3}+1+\dfrac{1}{4}\)
\(=\dfrac{28}{12}+\dfrac{12}{12}+\dfrac{3}{12}\)
\(=\dfrac{43}{12}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+10}\)
\(=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{55}\)
\(=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)
A=1/1*2+1/2*3+...+1/9*10
=1-1/2+1/2-1/3+...+1/9-1/10
=(1-1/10)+(1/2-1/2)+...+(1/9-1/9)
=(10/10-1/10)+0+...+0=9/10
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{20}.\left(1+2+....+20\right)\)
\(=1+\frac{1}{2}\times\frac{2.3}{2}+\frac{1}{3}\times\frac{3.4}{2}+...+\frac{1}{20}\times\frac{20.21}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)
\(=\frac{\left(2+21\right).20:2}{2}=\frac{230}{2}=115\)
Số cuối là
\(\frac{1}{10}.\left(1+2+3+...+10\right)\) hay \(\frac{1}{20}.\left(1+2+3+...+20\right)\) ??