K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Chọn D.

Ta có:

Vậy  sin C = cosA + cos B khi và chỉ khi

Hay 

Nên c2[(a + b) 2 - c2]= (a + b)2[ c2 - (a - b)2]

Do đó; c4 = (a2 - b2) 2

Suy ra a2 = b2 + c2 hoặc b2 = c2 + a2

Suy ra; tam giác ABC vuông tại A hoặc B.

 

15 tháng 2 2019

Đáp án: D

a sai vì nếu tam giác ABC thỏa mãn AB + AC2 = BC2 thì tam giác ABC vuông tại A không phải vuông tại B.

b, c, d đúng.

14 tháng 1 2017

a) Nếu ABC là một tam giác cân thì ABC là tam giác đều

Đây là mệnh đề sai

b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều

Đây là mệnh đề đúng

24 tháng 10 2016

Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)

Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)

Suy từ giả thiết : 

\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)

Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

\(\Rightarrow\Delta ABC\) là tam giác đều.

6 tháng 12 2021

c tam giác abc vuông tại c

 

Chọn C

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)

\(P \Rightarrow Q\): “Nếu tam giác ABC là tam giác vuông tại A thì các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”

Mệnh đề này đúng.

\(Q \Rightarrow P\): “Nếu tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\) thì tam giác ABC vuông tại A”

Mệnh đề này đúng.

\(P \Leftrightarrow Q\): “Tam giác ABC là tam giác vuông tại A khi và chỉ khi các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”

Mệnh đề này đúng do các mệnh đề \(P \Rightarrow Q,Q \Rightarrow P\)đều đúng.

\(\overline P  \Rightarrow \overline Q \): “Nếu tam giác ABC không là tam giác vuông tại A thì các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} \ne B{C^2}\)”

Mệnh đề này đúng.

b) Mệnh đề \(P \Rightarrow Q\) có thể phát biểu là:

“Tam giác ABC là tam giác vuông tại A là điều kiện đủ để tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”

“Tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\) là điều kiện cần để tam giác ABC vuông tại A”

c)

X là tập hợp các tam giác ABC vuông tại A.

 Y là tập hợp các tam giác ABC có trung tuyến \(AM = \frac{1}{2}BC\).

Dễ thấy: \(X \subset Y\) do các tam giác ABC vuông thì đều có trung tuyến \(AM = \frac{1}{2}BC\).

Ta chứng minh: Nếu tam giác ABC có trung tuyến \(AM = \frac{1}{2}BC\) thì tam giác ABC vuông tại A.

Thật vậy, \(BM = MC = AM = \frac{1}{2}BC\) suy ra M là tâm đường tròn đường kính BC, ngoại tiếp tam giác ABC.

\( \Rightarrow \widehat {BAC} = {90^ \circ }\) (góc nội tiếp chắn nửa đường tròn)

Vậy tam giác ABC là tam giác vuông.

Do đó \(Y \subset X\)

Vậy \(X = Y\)