Cho tam thức bậc hai f(x) = a x 2 + bx + c, (a ≠ 0) có biệt thức Δ = b 2 - 4ac. Chọn khẳng định đúng:
A. Nếu Δ < 0 thì af(x) > 0, ∀x ∈ R
B. Nếu Δ > 0 thì af(x) < 0, ∀x ∈ R
C. Nếu Δ ≤ 0 thì af(x) ≥ 0, ∀x ∈ R
D. Nếu Δ ≥ 0 thì af(x) > 0, ∀x ∈ R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Xét phương trình bậc hai a x 2 + b x + c = 0 ( a ≠ 0 ) có biệt thức b = 2b'; Δ ' = b ' 2 - a c :
Nếu Δ' = 0 thì phương trình có nghiệm kép x 1 = x 2 =
Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0)
có b = 2b’và biệt thức Δ ' = b ' 2 − a c
Nếu Δ ' =0 thì phương trình có nghiệm kép = − b a
Đáp án cần chọn là: C
a) Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a
Do đó,phương trình (1) có hai nghiệm x 1 = ( - b + √ Δ ) / 2 a ; x 2 = ( - b - √ Δ ) / 2 a
b) Nếu Δ = 0 thì từ phương trình (2) suy ra ( x + b / 2 a ) 2 = 0
Do đó,phương trình (1) có nghiệm kép x = (-b)/2a
Đáp án C
Xét phương trình bậc hai một ẩn và biệt thức
• TH1: Nếu thì phương trình vô nghiệm
• TH2: Nếu thì phương trình có nghiệm kép x 1 = x 2 =
• TH3: Nếu thì phương trình có hai nghiệm phân biệt x 1 , 2 =
Đáp án A
Xét phương trình bậc hai một ẩn a x 2 + b x + c = 0 ( a ≠ 0 ) và biệt thức Δ = b 2 - 4 a c
• TH1: Nếu thì phương trình vô nghiệm
• TH2: Nếu thì phương trình có nghiệm kép x 1 = x 2 =
• TH3: Nếu thì phương trình có hai nghiệm phân biệt x 1 , 2 =
Đáp án A.
Ta có: nếu Δ < 0 thì f(x) luôn cùng dấu với hệ số a với mọi giá trị của x, tức là af(x) > 0, ∀x ∈ R