Cho hình thoi abcdcos 2 đường chéo ac và bd cắt nhau tại o.kẻ oe vuông góc ab of vuông góc bc oh vuông góc cd ok vuông góc da a) chứng minh oe=of.= oh.= ok b) chứng minh 3 điểm e,o,h thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;Vì AB//CD nên theo định lí Ta-lét ta có:
OA/OC=OB/ODOAOC=OBOD
⇒OA.OD=OC.OB⇒OA.OD=OC.OB
b;Xét ΔAOHΔAOH và ΔCOKΔCOKcó:
AHOˆ=CKO=90oˆAHO^=CKO=90o^
AOHˆ=COKˆAOH^=COK^ (hai góc đối đỉnh)
⇒ΔAOH ΔCOK(g.g)⇒ΔAOH ΔCOK(g.g)
⇒OAOC=OHOK(1)⇒OAOC=OHOK(1)
Vì AB//CD nên theo hệ quả của định lí Ta-lét ta có
ABCD=OAOC(2)ABCD=OAOC(2)
Từ 1 và 2 ta có:
OHOK=ABCD
tự kẻ hình :
a, có EI // AC (gt)
=> góc ACI = góc AIB (đồng vị)
có góc ACI = góc ABC do tam giác ABC cân tại A (gt)
=> góc EIB = góc EBI
=> tam giác EIB cân tại E (dh)
b, góc ACI = góc EIB (câu a)
góc ACI + góc FCO = 180
góc EIB + góc EIO = 180
=> góc FCO = góc EIO (1)
tam giác EIB cân tại E (câu a) => EI = EB (đn)
mà có EB = CF (gt)
=> FC = EI
xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)
và (1)
=> tam giác COF = tam giác IOE (g-c-g)
=> FO = OE (đn)
hăm đúng thì chịu