Tìm tập xác định của hàm số sau y = tan 2 x 3 sin 2 x - cos 2 x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).
Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)
b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\)
Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\)
Hàm số xác định khi: \(\left\{{}\begin{matrix}tanx\ne\pm1;cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)
a)\(\forall x\Rightarrow sinx\le1\Rightarrow1-sinx\ge0\)
cosx\(\ge-1\Rightarrow1+cosx\ge0\)
ĐK:cosx\(\ne-1\Leftrightarrow x\ne\pi+k2\pi\)
\(\Rightarrow D=\left\{R\backslash\left\{\pi+k2\pi\right\}\right\}\)
b)ĐK:\(cos\left(2x+\frac{\pi}{3}\right)\ne0\Leftrightarrow2x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{12}+\frac{k\pi}{2}\)
\(\Rightarrow D=\left\{R\text{\}\left\{\frac{\pi}{12}+\frac{k\pi}{2}\right\}\right\}\)