Cho khối chóp S.ABCD có ABCD là hình vuông có cạnh đáy bằng 3a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp biết tam giác SAB vuông.
A . 9 a 3
B . 9 a 3 3 2
C . 9 a 3 2
D . 9 a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi H là trung điểm của AB khi đó S H ⊥ A B
Mặt khác S A B ⊥ A B C D do đó S H ⊥ A B C D
Ta có S H = S A 2 − H A 2 = 2 a 2 ; S A B C D = 4 a 2
Do đó V A B C D = 1 3 S H . S A B C D = 8 a 3 2 3
Chọn B.
Phương pháp:
- Xác định đường cao của hình chóp.
- Tính diện tích đáy và chiều cao suy ra thể tích theo công thức V = 1 3 S h
Đáp án C
Gọi H là trung điểm của AB khi đó SH ⊥ AB
Do (SAB) ⊥ (ABCD) => SH ⊥ (ABCD)
Do SAB vuông cân tại S nên