Cho hình hộp ABCD.A'B'C'D' có thể tích là V. Tính thể tích của khối tứ diện theo V.
A . 1 6 V
B . 2 3 V
C . 1 3 V
D . 1 2 V
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Thể tích khối cầu ngoại tiếp tứ diện ABCD’ chính là thể tích khối cầu ngoại tiếp hình hộp chữ nhật ABCD.A’B’C’D’. Khi đó, bán kính khối cầu ngoại tiếp là R = A C ' 2 .
Ta có V = 4 3 πR 3 = 4 3 π . AC ' 3 8 = 9 2 πa 3 ⇒ AC ' 3 = 27 a 3 ⇒ AC ' = 3 a .
Mặt khác A C ' 2 = A B 2 + A D 2 + A A ' 2 ⇒ A D 2 = ( 3 a 2 ) - a 2 - ( 2 a ) 2 = 4 a 2 ⇒ A D = 2 a .
Vậy thể tích của hình hộp chữ nhật ABCD.A'B'C'D' là V = A A ' . A B . A D = a . 2 a . 2 a = 4 a 3 .
Đáp án là B
Gọi x là độ dài của cạnh hình lập phương
Ta có:
Theo giả thiết,
Vậy thể tích lập phương là:
Chọn C
Từ (1), (2) dễ dàng suy ra trung điểm I của
BD' là tâm mặt cầu ngoại tiếp tứ diện ABCD'
Ta có
Đáp án C
Ta có: A A ' = 2 3 a 2 − a 2 − 2 a 2 = 3 a
Thể tích khối hộp là: V = A A ' . S A B C D = 3 a . a 2 a = 3 2 a 3
Đáp án D
V A . C B ' D ' = V D ' . A C B ' = V B . A C B ' = V B ' . A B C = 1 3 . B B ' . S Δ A B C = 1 3 B B ' . 1 2 S A B C D = 1 6 B B ' . S A B C D = V 6
Đáp án C.
Ta có