Câu 2:
Số giá trị nguyên của để \(\frac{1}{4}x^2\) nhận giá trị nguyên nhỏ hơn 10 là
Chỉ cần ghi Đáp án thôi (3 like cho người đúng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Nếu mẫu bằng 0 thì phân số không tồn tại.
Hoặc:n-1=0
n=1
Hoặc 1+2n=0
n=-0,5.
Vậy....
Ta có:
Nếu mẫu bằng 0 thì phân số không tồn tại.
Hoặc:n-1=0
n=1
Hoặc 1+2n=0
n=-0,5.
Vậy....
Điều kiện để số x là nghiệm của đa thức P(x) là khi thay x vào P(x) thì giá trị của P(x) = 0
Mà theo phần a ta thấy:
P(1) = 0 ; P(-2) = 0
=> \(\hept{\begin{cases}x=1\\x=-2\end{cases}}\) là nghiệm của đa thức P(x)
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.