K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Trong mp (SAC) gọi IJ ∩ SA = T.

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

⇒ Do đó, thiết diện của hình chóp cắt bởi mp(P) là ngũ giác TMQNP.

7 tháng 8 2019


12 tháng 7 2017

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

+) Qua N kẻ NP// SC .

- Ta có: Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

- Từ đó ta có: (MNP) là mặt phẳng qua MN và song song với SC.

- Vậy (P) ≡ (MNP).

+) Ta có: (P) ∩ (SCD) = NP.

- Ta có: Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

+) Trong (ABCD), gọi I = NQ ∩ AC.

- Ta có: Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

3 tháng 2 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (P) // BC nên (P) sẽ cắt (SBC) theo giao tuyến B'C' song song với BC.

Tương tự, (P) cắt (SAD) theo giao tuyến MN song song với AD.

Khi M trùng với trung điểm A' của cạnh SA thì thiết diện MB'C'N' là hình bình hành.

b) Với M không trùng với A':

Gọi I ∈ B′M ∩ C′N. Ta có:

I ∈ B′M ⊂ (SAB), tương tự I′ ∈ C′N ⊂ (SCD)

Như vậy I ∈ Δ = (SAB) ∩ (SCD).

3 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ Ta có: (α) // AB

⇒ giao tuyến (α) và (ABCD) là đường thẳng qua O và song song với AB.

Qua O kẻ MN // AB (M ∈ BC, N ∈ AD)

⇒ (α) ∩ (ABCD) = MN.

+ (α) // SC

⇒ giao tuyến của (α) và (SBC) là đường thẳng qua M và song song với SC.

Kẻ MQ // SC (Q ∈ SB).

+ (α) // AB

⇒ giao tuyến của (α) và (SAB) là đường thẳng qua Q và song song với AB.

Từ Q kẻ QP // AB (P ∈ SA).

⇒ (α) ∩ (SAD) = PN.

Vậy thiết diện của hình chóp cắt bởi (α) là tứ giác MNPQ.

Ta có: PQ// AB và NM // AB

=> PQ // NM

Do đó, tứ giác MNPQ là hình thang.

26 tháng 11 2019

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

4 tháng 9 2021

undefined

(α) và (SAD) cùng chứa điểm M. Mà (α) // AD nên (α) \(\cap\) (SAD) = d1 với d1 là đường thẳng đi qua M và song song với AD. 

Trong (SAD) gọi H = d1 \(\cap\) SA ⇒ (SAD) \(\cap\) (α) = MH

(α) và (SBD) cùng chứa điểm M. Mà (α) // SB nên (α) \(\cap\) (SBD) = d2 với d2 là đường thẳng đi qua M và song song với SB. 

Trong (SBD) gọi G = d2 \(\cap\) BD ⇒ (SAD) \(\cap\) (α) = MG

(SAB) và (α) cùng chứa điểm H. Mà (SAB) chứa SB, (α) chứa MG và ta lại có MG // SB

⇒ (SAB) \(\cap\) (α) = d3 với d3 là đường thẳng đi qua H và song song với SB và MG

Trong (SAB) gọi J = \(d_3\cap AB\) ⇒ (SAB) \(\cap\) (α) = HJ

Trong (ABCD) gọi K = JG \(\cap\) CD

Thiết diện cần tìm là tứ giác HMKJ (hình thang hai đáy HM, JK)

*Lưu ý : (α) không cắt (SBC) vì (α) // (SBC). 

\(\cap\)

9 tháng 11 2023

a) Ta có:
- M là trung điểm của AB, nên M là trung điểm của đoạn thẳng AB.
- P là trung điểm của SC, nên P là trung điểm của đoạn thẳng SC.
- I là trung điểm của SB, nên I là trung điểm của đoạn thẳng SB.

Vì M, P, I lần lượt là trung điểm của các đoạn thẳng AB, SC, SB, nên ta có:
2AM = AB, 2CP = CS, 2BI = BS.

Giả sử BC không song song với MP. Khi đó, ta có:
- MP cắt BC tại H.
- MP cắt SA tại K.
- MP cắt QN tại L.

Theo định lý , ta có:
AH/HC = AK/KS = AL/LQ.

Từ đó, ta có:
2AM/2CP = AK/KS = AL/LQ.

Tuy nhiên, ta đã biết rằng 2AM/2CP = AB/CS = BS/CS = BI/CS = 2BI/2CP.

Vậy ta có:
2BI/2CP = AK/KS = AL/LQ.

Do đó, ta có AK = AL và KS = LQ.

Từ đó, ta suy ra K = L và Sẽ có MP song song với BC.

Vậy BC // (IMP).

b) Thiết diện của mặt phẳng (α) với hình chóp là một hình tam giác. Để xác định hình tam giác này, cần biết thêm thông tin về góc giữa mặt phẳng (α) và mặt phẳng đáy ABC.

c) Đường thẳng CN và mặt phẳng (SMQ) giao nhau tại một điểm. Để tìm giao điểm này, cần biết thêm thông tin về góc giữa đường thẳng CN và mặt phẳng (SMQ).

--thodagbun--

(Bn tham khảo cách lm đy nhe )