Lập tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên 1 số trong các số lập được. Tính xác suất để chọn được số chia hết cho 25
A. .
B. .
C. .
D. .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Có n Ω = 9.9.8.7 = 4536 ;
Gọi số đó là a b c d ¯ . Số đó muốn chia hết cho 25 thì điều kiện là cd chia hết cho 25. Từ đó c d ∈ 25 ; 52 ; 50 ; 05 ; 75 ; 57 .
TH1: c d ∈ 25 ; 75 : c d có 4 cách chọn, a:7 cách; b:7 cách -> Có 2.7.7=98 số.
TH2: c d ∈ 50 : c d có 2 cách chọn, a:8 cách chọn, a:7 cách -> Có 8.7=56 số.
Vậy
n A = 98 + 56 = 154 ⇒ p A = n A n Ω = 154 4536 = 11 342
Đáp án D
Có n ( Ω ) = 9 . 9 . 8 . 7 = 4536 ;
Gọi số đó là a b c d . Số đó muốn chia hết cho 25 thì điều kiện là cd chia hết cho 25. Từ đó c d ∈ { 25 ; 52 ; 50 ; 05 ; 75 ; 57 } .
TH1: c d ∈ { 25 ; 75 } : cd có 4 cách chọn, a:7 cách; b:7 cách => Có 2.7.7 =98 số.
TH2: c d ∈ { 50 } : cd có 2 cách chọn, a:8 cách chọn, b:7 cách => Có 8.7 = 56 số.
Vậy n(A) = 98 + 56 = 154
⇒ p ( A ) = n ( A ) n ( Ω ) = 154 4536 = 11 342 .
Đáp án C
Số số tự nhiên gồm 4 chữ số đôi một khác nhau là 9.9.8.7 = 4536 . Không gian mẫu Ω có số phần tử là n Ω = C 4536 1 = 4536 .
Gọi A là biến cố “Số được chọn chia hết cho 25”. Gọi số đó có dạng Chọn thì c d ¯ ∈ 25 ; 50 ; 75 .
* Số đó có dạng a b 25 ¯ : Chọn a có 7 cách, chọn b có 7 cách. Suy ra 7.7 = 49 số a b 25 ¯ thỏa mãn.
* Số đó có dạng a b 50 ¯ : Chọn a có 8 cách, chọn b có 7 cách. Suy ra 8.7=56 số a b 50 ¯ thỏa mãn.
* Số đó có dạng a b 75 ¯ : Chọn a có 7 cách, chọn b có 7 cách. Suy ra 7.7=49 số a b 75 ¯ thỏa mãn.
Vậy số phần tử của biến cố A là n A = 49 + 56 + 49 = 154 .
Vậy xác suất cần tính là P A = n A n Ω = 154 4536 = 11 324 .
\(\overline{abcd}\)
Không gian mẫu: \(n\left(\Omega\right)=6.5.4.3=360\)
\(\Rightarrow\left(a;b;c;d\right)=\left(1;2;3;6\right);\left(1;2;4;5\right);\left(1;3;5;6\right);\left(2;3;4;6\right);\left(3;4;5;6\right)\)
\(\Rightarrow5.4!=120\left(so\right)\) \(\Rightarrow n\left(A\right)=120\Rightarrow P\left(A\right)=\dfrac{n\left(A\right)}{n(\Omega)}=\dfrac{120}{360}=\dfrac{1}{3}\)
Không gian mẫu: \(A_6^3=120\)
Gọi số cần lập có dạng \(\overline{abc}\)
Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)
Chọn và hoán vị cặp ab: \(A_5^2=20\) cách
\(\Rightarrow1.20=20\) số chia hết cho 5
Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)
Đáp án C
Số số tự nhiên gồm 4 chữ số đôi một khác nhau là . Không gian mẫu có số phần tử là .
Gọi A là biến cố “Số được chọn chia hết cho 25”. Gọi số đó có dạng Chọn thì .
* Số đó có dạng : Chọn a có 7 cách, chọn b có 7 cách. Suy ra số thỏa mãn.
* Số đó có dạng : Chọn a có 8 cách, chọn b có 7 cách. Suy ra số thỏa mãn.
* Số đó có dạng : Chọn a có 7 cách, chọn b có 7 cách. Suy ra số thỏa mãn.
Vậy số phần tử của biến cố A là
.
Vậy xác suất cần tính là
.