OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tập huấn miễn phí ra đề kiểm tra và chấm phiếu trắc nghiệm dành cho giáo viên khối THCS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số f(x) xác định trên R bởi f ( x ) = x 2 . Giá trị f ' (0) bằng
A. 0
B. 2
C. 1
D. không tồn tại
Chọn D
Ta có : f ' x = 1 2 x 2 . ( x 2 ) ' = x x 2
-> f '(x) không xác định tại x = 0
-> f ' (0) không có đạo hàm tại x= 0
Cho hàm số f(x) xác định trên R\{±1} thỏa mãn f '(x) = 1 x 2 - 1 . Biết f(–3) +f(3) = 0 và f - 1 2 + f 1 2 = 2. Giá trị T = f(–2) + f(0) + f(4) bằng:
A. T = 1 2 ln 9 5
B. T = 2 + 1 2 ln 9 5
C. T = 3 + 1 2 ln 9 5
D. T = 1 + 1 2 ln 9 5
Đáp án D.
Phương pháp:
Cách giải:
=> f(x) =
Cho hàm số f(x) xác định trên R\{-1;1/2} và thỏa mãn f ' x = 4 x + 1 2 x 2 + x - 1 ; f 1 + f - 2 = 0 và f(0) + 2f(1)=0. Giá trị của biểu thức f(-3) + f(-3) + f(-1/2) bằng:
A. ln14+ln20-3/2ln10
B. -ln10
C.ln70
D. ln28
Chọn đáp án C.
Cho hàm số y = f(x) xác định trên R\{1/2} thỏa mãn f ' ( x ) = 2 2 x - 1 ; f(0)=1 Giá trị của biểu thức f(-1)+f(3) bằng:
A. 4+ln15
B. 2+ln15
C. 3+ln15
D. ln15
Đáp án C
Cho hàm số f(x) xác định bởi f ( x ) = x 2 + 1 - x x ( x ≠ 0 ) 0 ( x = 0 ) . Giá trị f’(0) bằng:
B. 1
C. 1/2.
D. Không tồn tại.
Chọn C.
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Đáp án A
Mệnh đề đúng 1,3
Cho hàm số f(x) xác định trên R \ { 1 2 } thỏa mãn f ' ( x ) = 2 2 x - 1 f (0) = 1 và f(1) = 2. Giá trị của biểu thức f(-1)+f(3) bằng
A. 4 + l n 15
B. 2 + ln 15
C. 3+ ln 15
D. ln 15
Cho hàm số f(x) xác định trên R bởi f(x)= 2 x 2 + 1 . Giá trị f ' (-1) bằng:
B. 6
C. - 4
D. 3
Chọn C
Ta có : .f ' (x)=4x ⇒ f ' (-1)=-4
Cho hàm số f(x) xác định trên R bởi f(x) = 2x2 + 1. Giá trị f’(-1) bằng:
A. 2.
B. 6.
C. -4.
D. 3.
Ta có : f’(x) = 4x ⇒ f’(-1) = -4.
Cho hàm số f(x) xác định trên R bởi f ( x ) = 2 x 2 + 1 . Giá trị f'(-1) bằng:
C. -4
Ta có:
Chọn C.
Chọn D
Ta có : f ' x = 1 2 x 2 . ( x 2 ) ' = x x 2
-> f '(x) không xác định tại x = 0
-> f ' (0) không có đạo hàm tại x= 0