K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

Đáp án D

29 tháng 7 2017

14 tháng 3 2017

Đáp án C

Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình.

Vậy, có 3 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

10 tháng 4 2019

Đáp án C

Ta có : PT <=> log2 |cos x| – 2mlog|cos x| – m2 + 4 = 0

Đặt t = log|cos x|;  t ∈ ( - ∞ ; 0 ]

Khi đó: t2 – 2mt – m2 + 4 = 0 (*)

PT đã cho vô nghiệm <= > (*) vô nghiệm hoặc có nghiệm dương.

23 tháng 11 2018

 

21 tháng 4 2018

Phương trình mx2 – 2(m – 1)x + m − 3 = 0

(a = m; b = −2(m – 1); c = m – 3)

TH1: m = 0 ta có phương trình

2x – 3 = 02x = 3x = 3 2

TH2: m ≠ 0, ta có ∆ = b2 – 4ac = 4 (m – 1)2 – 4m. (m – 3)

= 4m2 – 8m + 4 – 4m2 + 12 = 4m + 4

Để phương trình đã cho có nghiệm thì ∆ ≥ 0

4m + 404m−4m−1

Vậy để phương trình đã cho có nghiệm thì m ≥ −1

Đáp án cần chọn là: C

5 tháng 8 2019

Đáp án C

8 tháng 4 2019

Phương trình mx2 + 2(m + 1)x + 1 = 0 (a = m; b = 2 (m + 1); c = 1)

TH1: m = 0 ta có phương trình 2x + 1 = 0

⇔ x = − 1 2 nên nhận m = 0 (1)

TH2: m ≠ 0, ta có  = 4(m + 1)2 – 4m.1 = 4m2 + 4m + 4

= 4m2 + 4m + 1 + 3= (2m + 1)2 + 3

Để phương trình đã cho có nghiệm thì

∆ ≥ 0(2m + 1)2 + 30

(2m + 1)2−3 (luôn đúng với mọi m) (2)

Từ (1) và (92) ta thấy phương trình đã cho có nghiệm với mọi m ∈ ℝ

Đáp án cần chọn là: D

22 tháng 1

\(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)

\(\Delta=\left(4m+1\right)^2-4\cdot1\cdot2\left(m-4\right)=16m^2+8m+1-8m+32=16m^2+33\ge33>0\forall m\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-\left(4m+1\right)+\sqrt{16m^2+33}}{2}\\x_2=\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}}{2}\end{matrix}\right.\) 

Mà: \(x_2-x_1=17\)

\(\Leftrightarrow\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}}{2}-\dfrac{-\left(4m+1\right)+\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}+\left(4m+1\right)-\sqrt{16m^2+33}}{2}=17\) 

\(\Leftrightarrow\dfrac{-2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\sqrt{16m^2+33}=-17< 0\)

Vậy không có m thỏa mãn