K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Chọn C.

Ta có:

a: pi/2<a<pi

=>sin a>0

\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)

\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)

b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

c: \(sin\left(a-\dfrac{pi}{3}\right)\)

\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)

d: \(cos\left(a-\dfrac{pi}{6}\right)\)

\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)

27 tháng 5 2021

`A=sin(π-α)+cos(π+α)+cos(-α)`

`= sinα-cosα+cosα=sinα=3/5`

31 tháng 3 2021

Cos 2a mà?

13 tháng 3 2019

NV
2 tháng 6 2020

\(A=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)

\(=\frac{3}{2}+\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}+\frac{1}{2}cos2x-\frac{1}{2}cos2x=\frac{3}{2}\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}-\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)

\(=\frac{3}{2}-\frac{1}{2}cos2x-cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x=\frac{3}{2}\)

\(\cos a=\dfrac{-12}{13}\)

\(\sin b=\dfrac{4}{5}\)

\(\sin\left(a+b\right)=\sin a\cos b+\sin b\cos a\)

\(=\dfrac{5}{13}\cdot\dfrac{3}{5}+\dfrac{4}{5}\cdot\dfrac{-12}{13}=\dfrac{-45}{65}=\dfrac{-9}{13}\)

NV
20 tháng 4 2022

\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow sina< 0\)

\(\Rightarrow sina=-\sqrt{1-cos^2a}=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5}\)

\(\Rightarrow sin2a=2sina.cosa=2.\left(-\dfrac{4}{5}\right).\left(\dfrac{3}{5}\right)=-\dfrac{24}{25}\)

Câu sau có nhầm đề ko nhỉ?

\(sin\left(\pi-\dfrac{\pi}{3}\right)=sin\left(\dfrac{2\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)

NV
22 tháng 12 2020

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)

NV
28 tháng 4 2021

\(P.sin\left(\dfrac{\pi}{7}\right)=sin\dfrac{\pi}{7}.cos\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}\)

\(\Leftrightarrow P.sin\dfrac{\pi}{7}=\dfrac{1}{2}sin\dfrac{2\pi}{7}cos\dfrac{2\pi}{7}cos\dfrac{4\pi}{7}\)

\(\Leftrightarrow P.sin\dfrac{\pi}{7}=\dfrac{1}{4}sin\dfrac{4\pi}{7}cos\dfrac{4\pi}{7}\)

\(\Leftrightarrow P.sin\dfrac{\pi}{7}=\dfrac{1}{8}sin\dfrac{8\pi}{7}=\dfrac{1}{8}sin\left(\pi+\dfrac{\pi}{7}\right)\)

\(\Leftrightarrow P.sin\dfrac{\pi}{7}=-\dfrac{1}{8}sin\dfrac{\pi}{7}\)

\(\Rightarrow P=-\dfrac{1}{8}\)