Giups minh bài này với ạ !!!!!!!!!!!!!!!
Cho hàm số f(x) thỏa mãn (x+1).f(x+2) = x-4 .f (x-1) \(\forall\)x . . Chứng minh rằng có ít nhất 2 giá trị của x để f(x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
\(\left(x+1\right)f\left(x+2\right)=\left(x-4\right)f\left(x-1\right)\)(1)
Thế \(x=4\)vào (1) ta được:
\(\left(4+1\right)f\left(4+2\right)=\left(4-4\right)f\left(4-1\right)\Leftrightarrow5f\left(6\right)=0\Leftrightarrow f\left(6\right)=0\)
Thế \(x=-1\)vào (1) ta được:
\(\left(-1+1\right)f\left(-1+2\right)=\left(-1-4\right)f\left(-1-1\right)\Leftrightarrow f\left(-2\right)=0\)
Vậy có ít nhất hai giá trị là \(x=6\)và \(x=-2\)để \(f\left(x\right)=0\).