OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong không gian Oxyz, cho mặt phẳng (P): y-2z+1=0. Một vecto pháp tuyến của (P) là :
A. (1;-2;1)
B. (1;-2;0)
C. (0;1;-2)
D. (0;2;4)
Trong không gian Oxyz cho mặt phẳng P : x + y − 2 z + 4 = 0. Một vecto pháp tuyến của mặt phẳng (P) là
A. n → = 1 ; 1 ; − 2
B. n → = 1 ; 0 ; − 2
C. n → = 1 ; − 2 ; 4
D. n → = 1 ; − 1 ; 2
Chọn A.
Trong không gian Oxyz cho mặt phẳng (P): x + y - 2z + 4 = 0 Một vecto pháp tuyến của mặt phẳng (P) là
Chọn A
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x+y-2z+3=0. Một vecto pháp tuyến của mặt phẳng (P) là:
A. (1;1;-2)
B. (0;0;-2)
C. (1;-2;1)
D. (-2;1;1)
Đáp án A
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2z+z+2017=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)
A. (1;-1;4)
B. (1;-2;2)
C. (2;2;1)
D. (-2;2;-1)
Đáp án D
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng P : 2 x - y - 2 z - 2 = 0 . (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a ; b ; 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
A. a - b = - 1
B. a + b = - 2
C. a - b = 1
D. a + b = 0
Đáp án B
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng (P): 2x-y-2z-2=0. (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a , b , 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2z+3=0. Vec tơ nào dưới đây là một vecto pháp tuyến của (P).
A. (1;0;-2)
C. (1;-1;3)
D. (3;-2;1)
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 3x-y+z+1=0. Trong các vecto sau , véc tơ nào không phải là vecto pháp tuyến của mặt phẳng (P)
A. (-3;-1;-1)
B. (6;-2;2)
C. (-3;1;-1)
D. (3;-1;1)
Trong không gian (Oxyz), cho mặt phẳng (P) x-2y+3z-1=0. Mặt phẳng có một vecto pháp tuyến là:
A. (-2;1;3)
B. (1;3;-2)
D. (1;-2;3)