Một hình vuông ABCD có cạnh AB = x, diện tích S1. Nối bốn trung điểm A1, B1, C1, D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai A1B1C1D1 có diện tích S2. Tiếp tục như thế ta được hình vuông thứ ba A2B2C2D2 có diện tích S3 và cứ tiếp tục như thế ta được diện tích thứ S4, S5,…Tìm x để S 1 + S 2 + S 3 + . . . + S 100 = 2 100 - 1 2 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tính được
Như vậy S 1 , S 2 , S 3 , . . . , S 100 là cấp số nhân với
Đáp án C
Diện tích hình vuông A B C D là S 1 = a 2 ; diện tích hình vuông A 1 B 1 C 1 D 1 là S 2 = a 2 2 2 = a 2 2
Diện tích hình vuông A 2 B 2 C 2 D 2 là a 2 2 = a 2 4 ; ...
Diện tích hình vuông A 99 B 99 C 99 D 99 là S 100 = a 2 2 99
Vậy S = a 2 1 2 0 + 1 2 1 + 1 2 2 + ... + 1 2 99 ⏟ T
với T là tổng của CSN có u 1 = 1 ; q = 1 2 và n = 100
Do đó, tổng:
S = a 2 . 1 − 1 2 100 1 − 1 2 = 2 a 2 1 − 1 2 100 = a 2 2 100 − 1 2 99
Đáp án B.
Phương pháp:
Nếu u n là một cấp số nhân với công bội q ≠ 1 thì S n được tính theo công thức: S n = u 1 1 − q n 1 − q .
Cách giải:
Hình vuông ABCD cạnh a ⇒ S 1 = a 2
Hình vuông A 1 B 1 C 1 D 1 có cạnh bằng a 2 ⇒ S 2 = a 2 2
Hình vuông A 2 B 2 C 2 D 2 có cạnh bằng
a 2 2 = a 2 2 ⇒ S 3 = a 2 2 2
……
Hình vuông A 99 B 99 C 99 D 99 có cạnh bằng a 2 99 ⇒ S 100 = a 2 2 99
S = S 1 + S 2 + S 3 + ... + S 100 = a 2 2 0 + a 2 2 1 + a 2 2 2 + ... + a 2 2 99 = a 2 . 1 − 1 2 100 1 − 1 2 = a 2 2 100 − 1 2 100 .2 = a 2 2 100 − 1 2 99
Chọn B