GTNN của B=(lx-3l+6)2-7 =29 phải không ạ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất : lx| = |-x|
|x|+|y|\(\ge\)|x+y|
ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4
vậy giá trị nhỏ nhất là 4
dấu = xảy ra khi tất cả cùng dấu
cậu nên mua quyển sách mình nói nêu là dân chuyên toán
Ta có
T=/x-1/+/x-2/+/x-3/+/x-4/
=/x-1/+/2-x/+/x-3/+/4-x/
Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/
=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2
nhớ tick mình nha
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|ab\right|\) (dấu bằng xảy ra khi \(ab\ge0\))
\(\Rightarrow\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=\left|8\right|=8\)
=> Dmin = 8
Dấu "=" xảy ra khi \(\left(x+3\right)\left(5-x\right)\ge0\Rightarrow x\in\left\{-3;5\right\}\)
|x-3| > 0
=> |x-3| + 6 > 6
=> (|x-3| + 6)2 > 62 = 36
=> B = (|x-3| + 6)2 - 7 > 36 - 7 = 29
Đúng rùi ^^