Tìm x, y ∈ Z, biết:
b) (x – 2)(y + 1) = 23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2\cdot1,1-1,3}=\dfrac{5.5}{0.9}=\dfrac{55}{9}\)
=>x=121/18; y=143/18; z=77/9
Bài 2:
Với x,y,z,t là số tự nhiên khác 0
Có \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)
\(\dfrac{y}{x+y+z+t}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)
\(\dfrac{z}{x+y+z+t}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)
\(\dfrac{t}{x+y+z+t}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)
Cộng vế với vế \(\Rightarrow1< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}=2\)
=> M không là số tự nhiên.
Bài 1:
Ta có:
\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)
\(B=\left(1+\dfrac{2007}{2}\right)+\left(1+\dfrac{2006}{3}\right)+...+\left(1+\dfrac{2}{2007}\right)+\left(1+\dfrac{1}{2008}\right)+1\)
\(B=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)
\(B=2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}=2009\)
\(B=\overline{2x10y9}⋮9\left(0\le x,y\le9\right)\)
\(\Rightarrow\left(2+x+1+0+y+9\right)⋮9\)
\(\Rightarrow\left(12+x+y\right)⋮9\)
Do \(0\le x,y\le9\)
\(\Rightarrow\left[{}\begin{matrix}x+y=6\\x+y=15\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;5\right),\left(5;1\right),\left(2;4\right),\left(4;2\right),\left(3;3\right),\left(6;9\right),\left(9;6\right),\left(8;7\right),\left(7;8\right)\right\}\)
a) xy = -31
x | 1 | -1 | 31 | -31 |
y | -31 | 31 | -1 | 1 |
b) (x – 2)(y + 1) = 23
x - 2 | -1 | 1 | -23 | 23 |
y + 1 | -23 | 23 | -1 | 1 |
x | 1 | 3 | -21 | 25 |
y | -24 | 22 | -2 | 0 |
Ta có :
\(\left|3x+18\right|\ge0\) và \(\left|4x-28\right|\ge0\) \(\Rightarrow\) \(\left|3x+18\right|+\left|4y-28\right|\ge0\)
Mà \(\left|3x+18\right|+\left|4y-28\right|\le0\) ( đề bài cho )
\(\Rightarrow\)\(\left|3x+18\right|+\left|4y-28\right|=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+18=0\\4y-28=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=-18\\4y=28\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\y=7\end{cases}}}\)
Vậy \(x=-6\) và \(y=7\)
Ta có \(\left|3x+18\right|+\left|4y-28\right|\le0\)
Mà \(\left|3x+18\right|\ge0\forall x;\left|4y-28\right|\ge0\forall y\)
=> |3x+18|+|4y-28|=0
=> 3x+18=4y-28=0
• 3x+18=0 <=> 3x=-18 <=> x=-6
• 4y-28=0 <=> 4y=28 <=> y=7
Vậy ...
b) (x – 2)(y + 1) = 23