K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

NV
9 tháng 9 2021

1.

\(y'=\left(\dfrac{x}{lnx}\right)'.3^{\dfrac{x}{lnx}}.ln3=\dfrac{lnx-1}{ln^2x}.3^{\dfrac{x}{lnx}}.ln3\)

2.

\(y'=\left(tanx\right)'.tanx+\left(tanx\right)'.\dfrac{1}{tanx}=\dfrac{tanx}{cos^2x}+\dfrac{1}{tanx.cos^2x}\)

3.

\(y=\left(ln2x\right)^{\dfrac{2}{3}}\Rightarrow y'=\left(ln2x\right)'.\dfrac{2}{3}.\left(ln2x\right)^{-\dfrac{1}{3}}=\dfrac{1}{3x\sqrt[3]{ln2x}}\)

9 tháng 9 2021

Em cảm ơn anh nhiều ạ

14 tháng 4 2017

y'=\(\dfrac{1}{cos^2x}-\dfrac{1}{cos^2x}tan^2x+\dfrac{1}{cos^2x}tan^4x\)
=\(\dfrac{1}{cos^2x}-\dfrac{sin^2x}{\cos^4x}+\dfrac{\sin^4x}{\cos^8x}\)
=\(\dfrac{\cos^4x-\sin^2.\cos^2x+\sin^4x}{\cos^8x}\)

=\(\dfrac{\left(\cos^2x+\sin^2x\right)^2-3\sin^2x\cos^2x}{\cos^8x}\)

=\(\dfrac{-3\sin^2x}{\cos^6x}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(y' = {\left( {\tan x} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\)

Vậy \(y'\left( {\frac{{3\pi }}{4}} \right) = \frac{1}{{{{\cos }^2}\left( {\frac{{3\pi }}{4}} \right)}} = 2\).

8 tháng 9 2018

Giải bài 3 trang 163 sgk Đại Số 11 | Để học tốt Toán 11

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)

7 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(y'=2\left(tan^2x\right)'+3\left[cot\left(\dfrac{\pi}{3}-2x\right)\right]'\\ =2\cdot2tanx\cdot\left(tanx\right)'+3\cdot\dfrac{-\left(\dfrac{\pi}{3}-2x\right)'}{sin^2\left(\dfrac{\pi}{3}-2x\right)}\\ =\dfrac{4tanx}{cos^2x}+\dfrac{6}{sin^2\left(\dfrac{\pi}{3}-2x\right)}\)

29 tháng 9 2019

Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn B.

17 tháng 1 2018

HQ
Hà Quang Minh
Giáo viên
14 tháng 8 2023

\(a,y'=\left(x^3-4x^2+5\right)'=3x^2-8x\\ b,y''=\left(3x^2-8x\right)'=6x-8\)