Tìm các giới hạn sau: l i m 6 n - 1 3 n + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\dfrac{\sqrt{n^2+n-1}-n}{2n+3}=\lim\dfrac{n-1}{\left(2n+3\right)\left(\sqrt{n^2+n-1}+n\right)}\)
\(=\lim\dfrac{1-\dfrac{1}{n}}{\left(2+\dfrac{3}{n}\right)\left(\sqrt{n^2+n-1}+n\right)}=\dfrac{1}{2.+\infty}=0\)
a. ĐKXĐ: \(n\ne\dfrac{-3}{2}\); \(\left[{}\begin{matrix}x< \dfrac{-1-\sqrt{5}}{2}\\x>\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{n^2+n-1}-n}{2n+3}=\)\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{n}-\dfrac{1}{n^2}}-1}{2+\dfrac{3}{n}}=0\)
\(\lim\dfrac{n\sqrt{1+2+...+2n}}{3n^2+n-2}=\lim\dfrac{n\sqrt{\dfrac{2n\left(2n+1\right)}{2}}}{3n^2+n-2}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{3+\dfrac{1}{n}-\dfrac{2}{n^2}}=\dfrac{\sqrt{2}}{3}\)
\(\lim\dfrac{3+4^n}{1+3.4^{n+1}}=\lim\dfrac{3+4^n}{1+12.4^n}=\lim\dfrac{3\left(\dfrac{1}{4}\right)^n+1}{\left(\dfrac{1}{4}\right)^n+12}=\dfrac{0+1}{0+12}=\dfrac{1}{12}\)
\(\lim\dfrac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}=\lim\dfrac{\left(-2\right)^n+3^n}{-2\left(-2\right)^n+3.3^n}=\lim\dfrac{\left(-\dfrac{2}{3}\right)^n+1}{-2\left(-\dfrac{2}{3}\right)^n+3}=\dfrac{0+1}{0+3}=\dfrac{1}{3}\)
\(a,lim\left(\sqrt{n^2+n+1}-n\right)\)
\(=lim\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}\)
\(=lim\dfrac{1+\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
\(\lim\dfrac{\sqrt[]{n^3+2n}-2n^2}{3n+1}=\lim\dfrac{\sqrt[]{n+\dfrac{2}{n}}-2n}{3+\dfrac{1}{n}}=\lim\dfrac{n\left(\sqrt[]{\dfrac{1}{n}+\dfrac{2}{n^3}}-2\right)}{3+\dfrac{1}{n}}\)
\(=\dfrac{+\infty\left(0-2\right)}{3}=-\infty\)
\(\lim\dfrac{\left(-3\right)^n-4.5^{n+1}}{2.4^n+3.5^n}=\lim\dfrac{\left(-3\right)^n+20.5^n}{2.4^n+3.5^n}=\lim\dfrac{\left(-\dfrac{3}{5}\right)^n+20}{2\left(\dfrac{4}{5}\right)^n+3}=\dfrac{0+20}{0+3}=\dfrac{20}{3}\)
\(\lim\dfrac{2^n-3^n+4.5^{n+2}}{2^{n+1}+3^{n+2}+5^{n+1}}=\lim\dfrac{2^n-3^n+100.5^n}{2.2^n+9.3^n+5.5^n}=\lim\dfrac{\left(\dfrac{2}{5}\right)^n-\left(\dfrac{3}{5}\right)^n+100}{2\left(\dfrac{2}{5}\right)^n+9\left(\dfrac{3}{5}\right)^n+5}=\dfrac{100}{5}=20\)
\(\lim\left(3n-\sqrt{9n^2+1}\right)=\lim\dfrac{-1}{3n+\sqrt{9n^2+1}}=\lim\dfrac{-\dfrac{1}{n}}{3+\sqrt{9+\dfrac{1}{n^2}}}=\dfrac{0}{3+3}=0\)
\(\lim\left(\sqrt[3]{n^3-2n^2}-n\right)=\lim\dfrac{-2n^2}{\sqrt[3]{\left(n^3-2n^2\right)^2}+n\sqrt[3]{n^3-2n^2}+n^2}\)
\(=\lim\dfrac{-2}{\sqrt[3]{\left(1-\dfrac{2}{n}\right)^2}+\sqrt[3]{1-\dfrac{2}{n}}+1}=\dfrac{-2}{1+1+1}=-\dfrac{2}{3}\)
\(\lim\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}=\lim\dfrac{n\left(2+\dfrac{1}{n}\right).n^2.\left(3-\dfrac{2}{n}\right)^2}{n^3\left(1+\dfrac{1}{n^2}-\dfrac{1}{n^3}\right)}\)
\(=\lim\dfrac{\left(2+\dfrac{1}{n}\right)\left(3-\dfrac{2}{n}\right)^2}{1+\dfrac{1}{n^2}-\dfrac{1}{n^3}}=\dfrac{2.3^2}{1}=18\)
\(\lim\dfrac{2n-1}{3n^2+4n-1}=\lim\dfrac{n\left(2-\dfrac{1}{n}\right)}{n^2\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\lim\dfrac{2-\dfrac{1}{n}}{n\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\dfrac{2}{+\infty}=0\)
\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)
\(=n\times\dfrac{2}{3}=\)+∞