tìm số tự nhiên a nhỏ nhất biết khi chia a cho các số 5;7;11 thì các số dư lần lượt là 3;4;6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ tick cho mình đấy
b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)
Vậy (A+1) chia hết cho 12,15
BCNN của 12,15 là:
\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)
Vậy a=60-1=59
Học tốt nha ^-^
Bài 2:
Theo đề, ta có: \(a\in BC\left(24;220\right)\)
mà a nhỏ nhất
nên a=1320
Như thế này: Vì A chia 5 dư 3 nên A có tận cùng là 3 hoặc 8.
A chia cho 11 dư 6 nên A + 5 chia hết cho 11.
mà A có tận cùng là 3 hoặc 8 nên A + 5 cũng có tận cùng là 3 hoặc 8.
Nếu A+5 là số có hai chữ số mà chia hết cho 11 suy ra A +5 bằng 33 hoặc 88 - loại.
Vậy A+5 có 3 chữ số có tận cùng là 3 hoặc 8; nếu chữ số hàng trăm là 1 suy ra A+5 là 143 hoặc 198 (vì A+5 chia hết cho 11) thử lại ta thấy 198 thỏa mãn nên A là 193