Câu 10:
Tính tổng ta được kết quả là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: A
Số các số hạng của tổng đã cho là:
(2020−4):3+1=673 (số hạng)
Do đó:
S=4+7+10+13+...+2014+2017+2020
=(2020+4).673:2
=2024.673:2
=1362152:2
=681076
S=(-10)+(-9)+....+(-1)
=[(-10)+(-1)]+[(-9)+(-2)]+...+[(-6)+(-5)]
=(-11)+(-11)+...+(-11)
=(-11).5=-55
C1:
Ta có
x+10%x-10%x=297
=>x=297
C2:
S=Đề bài...
=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)
=\(\frac{1}{1}-\frac{1}{101}\)
=\(\frac{100}{101}\)
#hoctot
Câu 2:
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\)
\(\Rightarrow2S=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)
\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}+\frac{1}{101}\)
\(\Rightarrow2S=1-\frac{1}{101}\)
\(\Rightarrow2S=\frac{100}{101}\)
\(\Rightarrow S=\frac{100}{101}:2=\frac{100}{101}.\frac{1}{2}=\frac{50}{101}\)
A = 1.(3 - 1) + 3(5 - 1) + 5(7 - 1) + … + 99(101 - 1)
= 1.3 - 1 + 3.5 - 3 + 5.7 - 5 + … + 99.101 - 99
= (1.3 + 3.5 + 5.7 + … + 99.101) - (1 + 3 + 5 + 7 + … + 99)
= 171650 – 2500
= 169150
tieu tru di het con 0 ban a