Mảnh bìa nào dưới đây có thể ghép được thành một hình lập phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1: học sinh vẽ hình lên giấy rồi gấp thử và trả lời
Cách 2: suy luận:
-đương nhiên là không thể gấp hình 1 thành một hình lập phương.
- Với hình 2, khi ta gấp dãy 4 hình vuông ở dưới thành 4 mặt xung quanh thì 2 hình vuông ở trên sẽ đè lên nhau, không tạo thành một mặt đáy trên và một mặt đáy dưới được. Do đó hình 2 cũng bị loại.
- Hình 3 và hình 4 đều có thể gấp thành hình lập phương vì khi ta gấp dãy 4 hình vuông ở giữa thành 4 mặt xung quanh thì 2 hình vuông trên và dưới sẽ tạo thành hai mặt đáy trên và đáy dưới
Mỗi mảnh bìa ở hình 3 và hình 4 đều có thể gấp thành một hình lập phương.
Nói thêm :
a) Mọi mảnh bìa (6 hình vuông bằng nhau) gồm có một dãy 4 hình vuông ở giữa, 1 hình vuông ở phía trên, 1 hình vuông ở phía dưới đều có thể gấp lại thành một hình lập phương.
Ví dụ, các mảnh bìa sau có thể gấp được thành hình lập phương:
b) Mọi mảnh bìa gồm 6 hình vuông bằng nhau nhưng không có dạng đã nêu ở (a) thì không thể gấp lại thành hình lập phương được.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương. hi hi tick nhé
Ta có : \(333^{333}=\left(333^4\right)^{83}\cdot333=\left(...1\right)^{83}\cdot333=\left(...1\right)\cdot333=\left(...3\right)\)
\(555^{555}=\left(...5\right)\)
\(777^{777}=\left(777^4\right)^{194}\cdot777=\left(...1\right)^{194}\cdot777=\left(...1\right)\cdot777=\left(...7\right)\)
Để mình giải giúp bạn nha!!!
Hình như bạn vừa trả lời câu này thì phải: http://vn.answers.yahoo.com/question/ind...
Cũng tương tự như mình vừa chứng minh câu trên.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
Cách 1: học sinh vẽ hình lên giấy rồi gấp thử và trả lời
Cách 2: suy luận:
-đương nhiên là không thể gấp hình 1 thành một hình lập phương.
- Với hình 2, khi ta gấp dãy 4 hình vuông ở dưới thành 4 mặt xung quanh thì 2 hình vuông ở trên sẽ đè lên nhau, không tạo thành một mặt đáy trên và một mặt đáy dưới được. Do đó hình 2 cũng bị loại.
- Hình 3 và hình 4 đều có thể gấp thành hình lập phương vì khi ta gấp dãy 4 hình vuông ở giữa thành 4 mặt xung quanh thì 2 hình vuông trên và dưới sẽ tạo thành hai mặt đáy trên và đáy dưới
Mỗi mảnh bìa ở hình 3 và hình 4 đều có thể gấp thành một hình lập phương.
Nói thêm :
a) Mọi mảnh bìa (6 hình vuông bằng nhau) gồm có một dãy 4 hình vuông ở giữa, 1 hình vuông ở phía trên, 1 hình vuông ở phía dưới đều có thể gấp lại thành một hình lập phương.
Ví dụ, các mảnh bìa sau có thể gấp được thành hình lập phương:
b) Mọi mảnh bìa gồm 6 hình vuông bằng nhau nhưng không có dạng đã nêu ở (a) thì không thể gấp lại thành hình lập phương được.