Tìm số tự nhiên k sao cho: k ⋮ 6 và 12 < k < 49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k nên 7k là hợp số ( không thỏa mãn).
Với k = 1 thì 7k = 7 là số nguyên tố.
Vậy k = 1.
b, k chia cho 5 có thể dư 0,1,2,3,4.
Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).
Với k chia cho 5 dư 2 thì k+8 ⋮ 5 và k+8 > 5 nên k+8 là hợp số ( loại).
Với k chia cho 5 dư 3 thì k+12 ⋮ 5 và k+12 > 5 nên k+12 là hợp số ( loại).
Với k chia cho 5 dư 4 thì k+6 ⋮ 5 và k+6 > 5 nên k+6 là hợp số ( loại).
Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )
Với k = 5. Thử thấy 5,11,13,17,19 đều là số nguyên tố.
Vậy k = 5.
(∗)⇔m≤ak<m+1⇔ak−1<m≤ak⇔m=[ak](∗)⇔m≤ak<m+1⇔ak−1<m≤ak⇔m=[ak] (phần nguên của akak ).
Vậy ∃∃ duy nhất số nguyên mm thỏa (*) là m=[ak]m=[ak].
(*)<=>m < hoặc bằng <\(\frac{a}{k}\)m+1+1<=>\(\frac{a}{k}\)-1<m<hoặc bằng \(\frac{a}{k}\)<=>m=[\(\frac{a}{k}\)](phần nguyên của \(\frac{a}{k}\))
Vậy là số nguyên m thỏa (*) là m=[\(\frac{a}{k}\)]